Please wait a minute...
材料导报  2025, Vol. 39 Issue (6): 23120052-5    https://doi.org/10.11896/cldb.23120052
  无机非金属及其复合材料 |
vG和Cu/vG体系对H2O吸附的第一性原理研究
李门1, 李天鹏1, 郭爱强1, 刘建国2, 高欣宝1,*
1 陆军工程大学弹药保障与安全性评估国家级实验教学示范中心,石家庄 050000
2 中国人民解放军63870部队,陕西 华阴 714200
First-principles Study of H2O Adsorption by vG and Cu/vG Systems
LI Men1, LI Tianpeng1, GUO Aiqiang1, LIU Jianguo2, GAO Xinbao1,*
1 National Demonstration Center of Experimental Teaching for Ammunition Support and Safety Evaluation Education, Army Engineering University of PLA, Shijiazhuang 050000, China
2 63870 Troops of PLA, Huayin 714200, Shaanxi, China
下载:  全 文 ( PDF ) ( 7979KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 针对空位缺陷石墨烯(vG)和Cu原子掺杂空位缺陷石墨烯(Cu/vG)对H2O的吸附,采用基于密度泛函理论的第一性原理计算方法,开展了vG和Cu/vG体系的静电势(Electrostatic potential,ESP)分析,结果表明vG倾向于吸附H2O的H原子侧,而Cu/vG吸附H2O则有两种构型;进行了vG和Cu/vG体系的态密度分析,结果表明vG的化学活性高于Cu/vG,主要是由于vG中空缺位的C原子的2px和2py轨道对费米能级附近轨道有显著贡献;计算表明,vG吸附H2O的吸附能介于Cu/vG吸附H2O的两种构型之间;vG和Cu/vG体系吸附H2O时的轨道态密度分析表明,对于吸附能较大的Cu/vG吸附H2O构型,其Cu 3d与O 2p轨道的相互重叠是该体系吸附更强的原因。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李门
李天鹏
郭爱强
刘建国
高欣宝
关键词:  空位缺陷石墨烯  掺杂石墨烯  态密度  静电势  费米能级    
Abstract: Regarding the adsorption of H2O by vacancy defect graphene (vG) and Cu doped vacancy defect graphene (Cu/vG), a first principles calculation method based on density functional theory was used to analyze the electrostatic potential (ESP) of vG and Cu/vG systems. The results showed that vG tends to adsorb the H atom side of H2O, while Cu/vG adsorbs H2O in two configurations. We conducted density of states analysis on vG and Cu/vG systems, and the results showed that the chemical activity of vG was higher than that of Cu/vG, mainly due to the significant contribution of the 2px and 2py orbitals of the C atom with hollow vacancies in vG to the orbitals near the Fermi level. The calculation shows that the adsorption energy of vG for H2O is between the two configurations of Cu/vG for H2O adsorption. The analysis of orbital density of states for the adsorption of H2O by vG and Cu/vG systems shows that for Cu/vG adsorption configurations with higher adsorption energy, the overlap of Cu 3d and O 2p orbitals is the reason for the stronger adsorption of the system.
Key words:  vacancy defect graphene    doped graphene    density of state    electrostatic potential    Fermi energy level
出版日期:  2025-03-25      发布日期:  2025-03-24
ZTFLH:  O793  
通讯作者:  *高欣宝,陆军工程大学弹药保障与安全性评估国家级教学示范中心教授、博士研究生导师,目前主要从事弹药工程专业的教学和特种干扰材料等方面的研究工作。ysql123@yeah.net   
作者简介:  李门,陆军工程大学石家庄校区硕博连读研究生,在高欣宝教授的指导下进行研究。主要研究领域为特种材料。
引用本文:    
李门, 李天鹏, 郭爱强, 刘建国, 高欣宝. vG和Cu/vG体系对H2O吸附的第一性原理研究[J]. 材料导报, 2025, 39(6): 23120052-5.
LI Men, LI Tianpeng, GUO Aiqiang, LIU Jianguo, GAO Xinbao. First-principles Study of H2O Adsorption by vG and Cu/vG Systems. Materials Reports, 2025, 39(6): 23120052-5.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.23120052  或          https://www.mater-rep.com/CN/Y2025/V39/I6/23120052
1 Yao Y F, Sayan C, Abhishek D, et al. New Journal of Chemistry, 2021, 45(40), 18700.
2 Faruque M A A, Syduzzaman M, Sarkar J, et al. Nanomaterials, 2021, 11(9), 2414.
3 Li N, Li D, Zhen Z, et al. Defence Technology, 2023, 36, 106568.
4 Fan Q Q, An L B, Chang C L, et al. Materials Reports, 2023, 37(21), 105(in Chinese).
范青青, 安立宝, 常春蕊, 等. 材料导报, 2023, 37(21), 105.
5 Wang X Y, Wei S C, Liang Y, et at. Materials Reports, 2023, 37(11), 67(in Chinese).
王昕阳, 魏世丞, 梁义, 等. 材料导报, 2023, 37(11), 67.
6 Kuang A L, Mo M, Kuang M Q, et al. Materials Chemistry and Physics, 2020, 247, 122712.
7 Zhong M M, Yuan H K, Huang C, et al. Journal of Alloys and Compounds, 2018, 766, 104.
8 Zhou Q X, Ju W W, Su X Y, et al. Journal of Physics and Chemistry of Solids, 2017, 109, 40.
9 Liu J, Liang T X, Wang C, et al. RSC Advances, 2017, 7, 3257.
10 Zhang H P, Zhang R, Hu S C, et al. Physical Chemistry Chemical Physics, 2023, 25(44), 30708.
11 Kittiya P, Threrawee S, Monrudee L, et al. Journal of Physics and Chemistry of Solids, 2023, 185, 111758.
12 Gao L Y, Niu J J, Zhou M M, et al. Journal of Atomic and Molecular Physics, 2022, 39(4), 041007 (in Chinese).
高路洋, 牛佳洁, 周梅梅, 等. 原子与分子物理学报, 2022, 39(4), 041007.
13 Hou Y L, Sheng Z Z, Fu C, et al. Nature Communications, 2022, 13(1), 1227.
14 Namdev A, Telang A, Purohit R. International Journal of Advanced Technology and Engineering Exploration, 2023, 10(98), 119.
15 Yuan R. Design, preparation, and application research of functionalized graphene oxide. Ph. D. Thesis, University of Chinese Academy of Sciences, China, 2019.
袁瑞. 功能化氧化石墨烯的设计制备及其应用研究. 博士学位论文, 中国科学院大学, 2019.
16 Liu Y, Babu H V, Zhao J, et al. Composites Part B:Engineering, 2016, 89, 108.
17 Thomas D K, MarcellaI, Mauro D B, et al. The Journal of Chemical Physics, 2020, 152(19), 194103.
18 Lu T, Chen F W. Journal of Computational Chemistry, 2012, 33, 580.
19 Wang B H, Zhu M X, Liu M Z, et al. Journal of Molecular Liquids, 2022, 356, 120340.
20 Humphrey W F, Dalke A, Schulten K. Journal of Molecular Graphics, 1996, 14(1), 33.
21 Nadeem E, Akram W, Shehzad R A, et al. Optik, Zeitschrift fur Licht-und Elektronenoptik, 2022, 265, 169514.
22 Fatomi Z S, Nugraheni A, Sholihun S. Solid State Phenomena, 2023, 345, 139.
23 Miao W J, Wang L, Mu X J, et al. Journal of Materials Chemistry C, 2021, 9(39), 13600.
24 Fan Y Z, Li R H, Y R W, et al. Cell Reports Physical Science, 2023, 4(3), 101324.
[1] 吴迪, 林方敏, 张洪龙, 宋孟, 杨永, 殷兆良, 章小峰. 合金元素对bcc-Cu/NiAl共析出影响的第一性原理研究[J]. 材料导报, 2024, 38(9): 22070183-6.
[2] 唐新德, 刘水林, 伍素云, 刘宁, 张春燕, 龚升高. Ti3+/C/N-TiO2@NGQDs纳米复合光催化剂的制备及其可见光催化性能研究[J]. 材料导报, 2024, 38(23): 23090142-6.
[3] 余瑞, 张永安, 李亚楠, 李锡武, 李志辉, 闫丽珍, 温凯, 熊柏青. Zn对Al-Mg-Si合金时效析出相稳定性影响的第一性原理研究[J]. 材料导报, 2023, 37(4): 21040034-5.
[4] 贾慧灵, 于海滨, 吴锦绣, 谭心, 王峰, 孙士阳. Al、Cr、Fe掺杂对KDP(001)晶面力学性能影响的第一性原理研究[J]. 材料导报, 2022, 36(Z1): 22020116-6.
[5] 杜颖妍, 陈婷, 贾倩, 李越, 毋志民. 新型稀磁半导体Mn掺LiBeP的磁电性质调控[J]. 材料导报, 2021, 35(10): 10013-10016.
[6] 朱广彬, 边志成, 何雨林, 李前进, 郭路路, 罗志虹, 罗鲲. 铁/氮共掺杂石墨烯的制备及氧还原催化活性[J]. 材料导报, 2020, 34(2): 2010-2016.
[7] 陈豪, 肖清泉, 谢泉, 王坤, 史娇娜. 近红外Mg2Si/Si异质结光电二极管的结构设计与仿真[J]. 材料导报, 2019, 33(20): 3358-3362.
[8] 杨绍斌, 单学颖, 李思南, 唐树伟, 沈丁, 孙闻. Na在XC3(X=B,N,P)掺杂石墨烯表面吸附与扩散行为的
第一性原理研究
[J]. 材料导报, 2019, 33(10): 1640-1645.
[9] 徐志超, 冯中学, 史庆南, 杨应湘. Mg-Zn-Y合金中14H-LPSO相与W相的电子结构与弹性性能的第一性原理计算[J]. 材料导报, 2018, 32(6): 1026-1031.
[10] 王青福, 刘新刚, 康文彬, 张楚虹. 固相剪切磨盘碾磨法制备四氧化三铁/氮掺杂石墨烯复合材料及其在锂离子电池中的应用[J]. 材料导报, 2018, 32(21): 3689-3696.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[9] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
[10] Tao YAN,Guimin LIU,Shuo ZHU,Linfei DU,Yang HUI. Current Research Status of Electromagnetic Rail Materials Surface Failure and Strengthen Technology[J]. Materials Reports, 2018, 32(1): 135 -140 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed