Please wait a minute...
材料导报  2025, Vol. 39 Issue (2): 23110149-10    https://doi.org/10.11896/cldb.23110149
  金属与金属基复合材料 |
铜纳米簇基荧光探针的合成及应用研究进展
初红涛1,2,3,*, 刘晓函1, 赵明1,2,3, 高立娣1, 秦世丽1, 韩爽1, 王军4
1 齐齐哈尔大学化学与化学工程学院,黑龙江 齐齐哈尔 161006
2 黑龙江省工业大麻加工技术创新中心,黑龙江 齐齐哈尔 161006
3 国家市场监管技术创新中心(工业大麻),黑龙江 齐齐哈尔 161006
4 贵州师范大学化学与材料科学学院,贵阳 550025
Advances in Synthesis and Application of Copper Nanocluster Fluorescent Probes
CHU Hongtao1,2,3,*, LIU Xiaohan1, ZHAO Ming1,2,3, GAO Lidi1, QIN Shili1, HAN Shuang1, WANG Jun4
1 College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, Heihongjiang, China
2 Heilongjiang Province Industrial Hemp Processing Technology Innovation Center, Qiqihar 161006, Heihongjiang, China
3 National Market Regulation Technology Innovation Center (Industrial Hemp), Qiqihar 161006, Heihongjiang, China
4 College of Chemistry and Materials Science, Guizhou Normal University, Guiyang 550025, China
下载:  全 文 ( PDF ) ( 8863KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 金属纳米簇(MNCs)是几个到近百个金属原子组成的纳米材料,由于具有尺寸效应,表现出不同于常规金属的光学性质,引起了广泛关注。近年来随着对MNCs不断深入的研究,制备出各种金属(如Au、Ag、Pt、Cu以及合金)纳米簇。其中铜纳米簇(CuNCs)具有随尺寸变化且可调的荧光,合成条件温和,制备成本低,并且化学性质稳定,与传统的半导体纳米晶体、量子点(QDs)和有机染料相比更有优势,在化学和生物分析方面具有广阔的应用前景。本文从“自上而下法”(Top-down)和“自下而上法”(Bottom-up)两方面介绍了近些年合成CuNCs的主要方法,基于荧光“关闭”(“Turn-off”型荧光探针)和荧光“开启”(“Turn-on”型荧光探针)两种荧光传感机理对其应用领域进行了系统综述,对CuNCs的未来发展趋势进行了展望。相信该综述能够帮助研究者们从更深入的角度探究不同的传感机理,从而构建出更加精准、高效、可靠的CuNCs类荧光探针。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
初红涛
刘晓函
赵明
高立娣
秦世丽
韩爽
王军
关键词:  铜纳米簇  制备  机理  荧光分析    
Abstract: Metal nanoclusters (MNCs), which are nanomaterials consisting of a few to nearly a hundred metal atoms, have attracted much attention due to the size effect and exhibit optical properties that differ from those of conventional metals. In recent years, with the increasing research on MNCs, various metal (e.g., Au, Ag, Pt, Cu, and alloys) nanoclusters have been prepared. Among them, copper nanoclusters (CuNCs) have size-dependent and tunable fluorescence, mild synthesis conditions, low preparation cost, non-toxicity, and are chemically stable, which are more advantageous than conventional semiconductor nanocrystals, quantum dots (QDs), and organic dyes, and they have a promising future for chemical and bioanalytical applications. Synthesis of CuNCs in recent years are introduced in terms of “turn-off” and “bottom-up” methods, and their application fields are systematically reviewed based on the fluorescence sensing mechanisms of “turn-off” and “turn-on” modes. A systematic review of the application fields of CuNCs is conducted, and the future development trend of CuNCs is prospected. It is believed that this review will help researchers to explore different sensing mechanisms from a deeper perspective, to construct more accurate, efficient and reliable fluorescent probes.
Key words:  copper nanoclusters    synthesis    mechanism    fluorescence analysis
出版日期:  2025-01-25      发布日期:  2025-01-21
ZTFLH:  O657  
基金资助: 国家自然科学基金(22161012);黑龙江省省属高校基本科研业务费科研项目(145309305)
通讯作者:  *初红涛,工学博士,齐齐哈尔大学教授、硕士研究生导师。主要从事新型荧光探针的设计及应用、色谱分析技术应用等研究。lange19790@163.com   
引用本文:    
初红涛, 刘晓函, 赵明, 高立娣, 秦世丽, 韩爽, 王军. 铜纳米簇基荧光探针的合成及应用研究进展[J]. 材料导报, 2025, 39(2): 23110149-10.
CHU Hongtao, LIU Xiaohan, ZHAO Ming, GAO Lidi, QIN Shili, HAN Shuang, WANG Jun. Advances in Synthesis and Application of Copper Nanocluster Fluorescent Probes. Materials Reports, 2025, 39(2): 23110149-10.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.23110149  或          https://www.mater-rep.com/CN/Y2025/V39/I2/23110149
1 Jin R C. Nanoscale, 2015, 7(5), 1549.
2 Wang S M, Xu Z X, Fu J. Preparation technology of nanomaterials, Chemical Industry Press, China, 2000, pp. 2 (in Chinese).
王世敏, 许祖勋, 傅晶.纳米材料制备技术, 化学工业出版社, 2000, pp. 2.
3 Baghdasaryan A, Bürgi T. Nanoscale, 2021, 13(13), 6283.
4 Basu K, Paul S, Jana R, et al. ACS Sustainable Chemistry & Enginee-ring, 2019, 7(2), 1998.
5 Deng H H, Li K L, Zhuang Q Q, et al. Nanoscale, 2018, 10(14), 6467.
6 Li R, Xu J, Zhao Q, et al. Science China Materials, 2023, 66(4), 1427.
7 Vilar-Vidal N, Blanco M C, Lopez-Quintela M A, et al. The Journal of Physical Chemistry C, 2010, 114(38), 15924.
8 Guo Y Y, Zhang S. Chemical Research and Application, 2021, 33(9), 1693 (in Chinese).
郭玉玉, 张申.化学研究与应用, 2021, 33(9), 1693.
9 Akhuli A, Chakraborty D, Agrawal A K, et al. Langmuir, 2021, 37(5), 1823.
10 Yang J, Song N, Lv X, et al. Sensors and Actuators B: Chemical, 2018, 259, 226.
11 Yang S Q, Li G H, Song C K, et al. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 606, 125514.
12 Kim J, Gang J. Bulletin of the Korean Chemical Society, 2020, 42(1), 32.
13 Rajamanikandan R, Aazaad B, Lakshmipathi S, et al. Microchemical Journal, 2020, 158, 105253.
14 Guo Y Y, Li W J, Guo P Y, et al. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2022, 268, 120689.
15 Shao C Y, Xiong S X, Cao X, et al. Microchemical Journal, 2021, 163, 105922.
16 Deng Y L, Li Q. Biomedical engineering, Science Press, China, 2012 (in Chinese).
邓玉林, 李勤.生物医学工程学, 科学出版社, 2012.
17 Jiao T, Wen H X, Li Z P. Analytical Chemistry, 2022, 50(2), 235 (in Chinese).
焦婷, 温昊翔, 李忠平. 分析化学, 2022, 50(2), 235.
18 Xu J G, Wang Z B. Fluorescence Analysis (3rd Edition), Science Press, China, 2006, pp. 64 (in Chinese).
许金钩, 王尊本.荧光分析法(第三版), 科学出版社, 2006, pp. 64.
19 Yang Z J, Ma Q, Song J P, et al. Chinese Journal of Analysis Laboratory, 2022, 41(5), 547 (in Chinese).
杨志军, 马琦, 宋金萍, 等. 分析试验室, 2022, 41(5), 547.
20 Chauhan C, Bhardwaj V, Sahoo S K. Microchemical Journal, 2021, 170, 106778.
21 Yang D Y, Zhou T, Tu Y F, et al. Microchimica Acta, 2021, 188(6), 212.
22 Cheng S J, Zhang H P, Wang W F, et al. Chinese Journal of Analysis Laboratory, 2022, 41(10), 1135 (in Chinese).
程生娟, 张皓璞, 王文芳, 等.分析试验室, 2022, 41(10), 1135.
23 Yang L X, Yi Z, Huang X B, et al. Chemistry (Huaxue Tongbao), 2022, 85(8), 971 (in Chinese).
杨丽霞, 易姿, 黄小贝, 等. 化学通报, 2022, 85(8), 971.
24 Lettieri M, Palladino P, Scarano S, et al. Microchimica Acta, 2021, 188(4), 1.
25 Jian J Y, Xiao X, Cao J X, et al. Sensors and Actuators B: Chemical, 2021, 344, 130311.
26 Li Y Y, He Y, Ge Y L, et al. Microchimica Acta, 2021, 188(3), 101.
27 Thammajinno S, Buranachai C, Kanatharana P, et al. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2022, 270, 120816.
28 Zhang X T, Mi Y Y, Liang J G, et al. Journal of Wuhan University (Natural Science Edition, 2021, 67(1), 47 (in Chinese).
张晓桐, 芈越瑶, 梁建功, 等.武汉大学学报(理学版), 2021, 67(1), 47.
29 Yang J L, Song N Z, Jia Q. Nanoscale, 2019, 11(45), 21927.
30 Lian N, Zhang Y H, Liu D, et al. Microchemical Journal, 2021, 164, 105989.
31 Yao L, Li X, Li H, et al. Journal of Fluorescence, 2022, 32(5), 1949.
[1] 白鹏飞, 杨聪仁, 马昆林, 丁亚蓉, 詹启贤, 孟庆胤, 陈荣健, 范佳志. 助磨剂影响矿物浮选的作用机理及研究进展[J]. 材料导报, 2025, 39(3): 24010120-7.
[2] 张凌凯, 丁旭升, 樊培培. 新疆北部重塑性黄土的力学特性规律及微观机制试验研究[J]. 材料导报, 2025, 39(3): 23090060-10.
[3] 陈芳, 冯奕程, 吴佳育, 关博文, 房建宏, 温小栋, 李超恩. 市政污泥陶粒制备及资源化利用研究进展[J]. 材料导报, 2025, 39(3): 23120099-9.
[4] 王鹤龙, 史贵丙, 王丽, 李宗臻. 高饱和磁通密度铁基非晶纳米晶磁粉芯的研究进展[J]. 材料导报, 2025, 39(3): 24010092-9.
[5] 宋少龙, 王晓地, 张哲, 任学冲, 栾本利. 高熵合金高周和低周疲劳行为研究进展[J]. 材料导报, 2025, 39(3): 23100148-12.
[6] 杜常博, 陶晗, 易富, 黄惠杰, 程传旺. 植物源脲酶诱导碳酸钙沉积固化石灰石粉尘试验研究[J]. 材料导报, 2025, 39(2): 23120191-8.
[7] 杨海涛, 练鑫晟, 柳苗, 孙国文, 王伟. 混凝土全寿命周期固碳技术研究进展[J]. 材料导报, 2025, 39(2): 23120145-8.
[8] 崔潮, 李渊, 党颖泽, 王岚, 彭晖. 碱-矿渣-偏高岭土基地聚物与骨料的界面粘结机理[J]. 材料导报, 2025, 39(1): 23110101-8.
[9] 苏悦, 闫楠, 白晓宇, 付林, 张启军, 梁斌, 王保栋, 王立彬, 张英杰, 张安琪. 预拌流态固化土的工程特性研究进展及应用[J]. 材料导报, 2024, 38(9): 23070212-7.
[10] 张立卿, 边明强, 王云洋, 许开成, 陈梦成, 韩宝国. 自修复混凝土修复性能评估中的若干关键技术与方法研究综述[J]. 材料导报, 2024, 38(9): 22100028-23.
[11] 唐宁, 王延军, 赵明宇, 孙艺涵, 王晴. 偏铝酸钠对单组分地聚水泥的性能调控及水化机理[J]. 材料导报, 2024, 38(8): 22060304-6.
[12] 于凯, 王静静, 刘平, 马迅, 张柯, 马凤仓, 李伟. 二硫化钼自润滑涂层性能及制备工艺的研究进展[J]. 材料导报, 2024, 38(7): 22080088-10.
[13] 孙华键, 郭德林, 李如庆, 侯良朋, 杨明辉, 孙金钊, 殷凤仕. 改性MCrAlY涂层的研究进展[J]. 材料导报, 2024, 38(7): 22120155-10.
[14] 李雪伍, 王红星, 郭伟玲, 邢志国, 黄艳斐, 王海斗. 红外抗反射微纳结构刻蚀制备研究进展[J]. 材料导报, 2024, 38(6): 22110062-10.
[15] 肖嵩, 刘明, 张小龙, 黄艳斐, 王海斗. 等离子喷涂熔滴铺展凝固行为研究现状[J]. 材料导报, 2024, 38(6): 22080031-12.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed