Advances in Synthesis and Application of Copper Nanocluster Fluorescent Probes
CHU Hongtao1,2,3,*, LIU Xiaohan1, ZHAO Ming1,2,3, GAO Lidi1, QIN Shili1, HAN Shuang1, WANG Jun4
1 College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, Heihongjiang, China 2 Heilongjiang Province Industrial Hemp Processing Technology Innovation Center, Qiqihar 161006, Heihongjiang, China 3 National Market Regulation Technology Innovation Center (Industrial Hemp), Qiqihar 161006, Heihongjiang, China 4 College of Chemistry and Materials Science, Guizhou Normal University, Guiyang 550025, China
Abstract: Metal nanoclusters (MNCs), which are nanomaterials consisting of a few to nearly a hundred metal atoms, have attracted much attention due to the size effect and exhibit optical properties that differ from those of conventional metals. In recent years, with the increasing research on MNCs, various metal (e.g., Au, Ag, Pt, Cu, and alloys) nanoclusters have been prepared. Among them, copper nanoclusters (CuNCs) have size-dependent and tunable fluorescence, mild synthesis conditions, low preparation cost, non-toxicity, and are chemically stable, which are more advantageous than conventional semiconductor nanocrystals, quantum dots (QDs), and organic dyes, and they have a promising future for chemical and bioanalytical applications. Synthesis of CuNCs in recent years are introduced in terms of “turn-off” and “bottom-up” methods, and their application fields are systematically reviewed based on the fluorescence sensing mechanisms of “turn-off” and “turn-on” modes. A systematic review of the application fields of CuNCs is conducted, and the future development trend of CuNCs is prospected. It is believed that this review will help researchers to explore different sensing mechanisms from a deeper perspective, to construct more accurate, efficient and reliable fluorescent probes.
1 Jin R C. Nanoscale, 2015, 7(5), 1549. 2 Wang S M, Xu Z X, Fu J. Preparation technology of nanomaterials, Chemical Industry Press, China, 2000, pp. 2 (in Chinese). 王世敏, 许祖勋, 傅晶.纳米材料制备技术, 化学工业出版社, 2000, pp. 2. 3 Baghdasaryan A, Bürgi T. Nanoscale, 2021, 13(13), 6283. 4 Basu K, Paul S, Jana R, et al. ACS Sustainable Chemistry & Enginee-ring, 2019, 7(2), 1998. 5 Deng H H, Li K L, Zhuang Q Q, et al. Nanoscale, 2018, 10(14), 6467. 6 Li R, Xu J, Zhao Q, et al. Science China Materials, 2023, 66(4), 1427. 7 Vilar-Vidal N, Blanco M C, Lopez-Quintela M A, et al. The Journal of Physical Chemistry C, 2010, 114(38), 15924. 8 Guo Y Y, Zhang S. Chemical Research and Application, 2021, 33(9), 1693 (in Chinese). 郭玉玉, 张申.化学研究与应用, 2021, 33(9), 1693. 9 Akhuli A, Chakraborty D, Agrawal A K, et al. Langmuir, 2021, 37(5), 1823. 10 Yang J, Song N, Lv X, et al. Sensors and Actuators B: Chemical, 2018, 259, 226. 11 Yang S Q, Li G H, Song C K, et al. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 606, 125514. 12 Kim J, Gang J. Bulletin of the Korean Chemical Society, 2020, 42(1), 32. 13 Rajamanikandan R, Aazaad B, Lakshmipathi S, et al. Microchemical Journal, 2020, 158, 105253. 14 Guo Y Y, Li W J, Guo P Y, et al. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2022, 268, 120689. 15 Shao C Y, Xiong S X, Cao X, et al. Microchemical Journal, 2021, 163, 105922. 16 Deng Y L, Li Q. Biomedical engineering, Science Press, China, 2012 (in Chinese). 邓玉林, 李勤.生物医学工程学, 科学出版社, 2012. 17 Jiao T, Wen H X, Li Z P. Analytical Chemistry, 2022, 50(2), 235 (in Chinese). 焦婷, 温昊翔, 李忠平. 分析化学, 2022, 50(2), 235. 18 Xu J G, Wang Z B. Fluorescence Analysis (3rd Edition), Science Press, China, 2006, pp. 64 (in Chinese). 许金钩, 王尊本.荧光分析法(第三版), 科学出版社, 2006, pp. 64. 19 Yang Z J, Ma Q, Song J P, et al. Chinese Journal of Analysis Laboratory, 2022, 41(5), 547 (in Chinese). 杨志军, 马琦, 宋金萍, 等. 分析试验室, 2022, 41(5), 547. 20 Chauhan C, Bhardwaj V, Sahoo S K. Microchemical Journal, 2021, 170, 106778. 21 Yang D Y, Zhou T, Tu Y F, et al. Microchimica Acta, 2021, 188(6), 212. 22 Cheng S J, Zhang H P, Wang W F, et al. Chinese Journal of Analysis Laboratory, 2022, 41(10), 1135 (in Chinese). 程生娟, 张皓璞, 王文芳, 等.分析试验室, 2022, 41(10), 1135. 23 Yang L X, Yi Z, Huang X B, et al. Chemistry (Huaxue Tongbao), 2022, 85(8), 971 (in Chinese). 杨丽霞, 易姿, 黄小贝, 等. 化学通报, 2022, 85(8), 971. 24 Lettieri M, Palladino P, Scarano S, et al. Microchimica Acta, 2021, 188(4), 1. 25 Jian J Y, Xiao X, Cao J X, et al. Sensors and Actuators B: Chemical, 2021, 344, 130311. 26 Li Y Y, He Y, Ge Y L, et al. Microchimica Acta, 2021, 188(3), 101. 27 Thammajinno S, Buranachai C, Kanatharana P, et al. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2022, 270, 120816. 28 Zhang X T, Mi Y Y, Liang J G, et al. Journal of Wuhan University (Natural Science Edition, 2021, 67(1), 47 (in Chinese). 张晓桐, 芈越瑶, 梁建功, 等.武汉大学学报(理学版), 2021, 67(1), 47. 29 Yang J L, Song N Z, Jia Q. Nanoscale, 2019, 11(45), 21927. 30 Lian N, Zhang Y H, Liu D, et al. Microchemical Journal, 2021, 164, 105989. 31 Yao L, Li X, Li H, et al. Journal of Fluorescence, 2022, 32(5), 1949.