Grading Optimization and Performance Study of Skeleton-dense Cement-stabilized Coal Gangue
JING Hongjun1,2,,*, ZHANG Chaowei1,2,, GAO Meng1,2, DING Renhong3, LI Yimin4, KANG Mingke1,2, ZHOU Zihan1,2, ZHU Shaofeng5
1 School of Architecture and Civil Engineering, Xi'an University of Science and Technology, Xi'an 710054, China 2 Road Engineering Research Centre, Xi'an University of Science and Technology, Xi'an 710054, China 3 Ankang Transportation Comprehensive Law Enforcement Detachment, Ankang 725099, Shaanxi, China 4 Ankang Road Transport Service Centre, Ankang 725199, Shaanxi, China 5 Dengfeng Local Road Administration Office, Dengfeng 452470, Henan, China
Abstract: To study the effect of grading on road performance of cement-stabilized gangue, this work utilized the coal gangue from Xiaobaodang coal mine in Yulin, Shaanxi Province as the research object. Based on the grade-by-step filling method and the K method, the optimal ratio of coarse/fine aggregates of coal gangue was determined according to the results of 7 d unconfined compressive strength (UCS), and the appropriate grading range of skeleton-dense cement-stabilized gangue aggregates was then obtained. On this basis, this work carried out relevant tests such as splitting strength (SS), compressive rebound modulus (CRM), frost resistance, and shrinkage characteristics, and made a comparative analysis on the aforementioned performance indexes of the mixtures prepared using the obtained grading range's upper limit, mean value, and lower limit with that prepared using the specification-recommended grading range's mean value (GF). The results showed that a coarse-fine aggregate ratio of coal gangue of 40%—50% could result in a skeleton-dense structure of the cement-stabilized coal gangue. When the cement dosage was 5%, compared with the GF grading specimen, the specimen with the proportion of mean value of the optimized grading (TJ2) exhibited 38.03%, 40.13% and 34.93% higher UCSs after curing for 7, 28, 90 d, respectively (with 7 d UCS>3.0 MPa), and a 30.13% higher coefficient of frost resistance after curing for 28 d, as well as a 35.85% lower coefficient of dry shrinkage. It could be concluded that the cement-stabilized coal gangue prepared using the optimized grading is superior to the product with specification-recommended grading in road performance.
1 Li J X, Shu Z L, Sun Q M, et al. Materials Reports, 2022, 36(S2), 252 (in Chinese). 李佳鑫, 舒志乐, 孙启明, 等. 材料导报, 2022, 36(S2), 252. 2 Tian X Q, Yang F L, Ma Z B, et al. Bulletin of the Chinese Ceramic So-ciety, 2018, 37(4), 7 (in Chinese). 田秀青, 杨凤玲, 马志斌, 等. 硅酸盐通报, 2018, 37(4), 7. 3 Ge J Y, Zhu H G, Li Z H, et al. Materials Reports, 2021, 35(S2), 218 (in Chinese). 葛洁雅, 朱红光, 李宗徽, 等. 材料导报, 2021, 35(S2), 218. 4 Yang Y M, Kong D S. Yunnan Chemical Technology, 2020, 47(4), 3 (in Chinese). 杨依民, 孔德顺. 云南化工, 2020, 47(4), 3. 5 Zhao S J, Zhang C L, Yang X S. Development Guide to Building Mate-rials, 2012(24), 5 (in Chinese). 赵双菊, 张彩朗, 杨小姝. 建材发展导向, 2012(24), 5. 6 Zhu X L, Gao Y X, Guo Z H, et al. Concrete, 2021(6), 6 (in Chinese). 祝小靓, 高育欣, 郭照恒, 等. 混凝土, 2021(6), 6. 7 Zhang N, Liu X M, Sun H H. Metal Mine, 2014(3), 6 (in Chinese). 张娜, 刘晓明, 孙恒虎. 金属矿山, 2014(3), 6. 8 Moghadam M J, Ajalloeian R, Hajiannia A. Construction and Building Materials, 2019, 221, 84. 9 Li Z X,Guo T T, Chen Y Z, et al. Materials Research Express, 2021, 8(12), 125502. 10 Guan J F, Lu M, Yao X H, et al. Crystals, 2021, 11(8), 993. 11 Peng Y, Yang J S, Liu J H. Applied Mechanics & Materials, 2012, 1802(178-181), 1226. 12 Li M. Application research on Huaibei water-washed coal gangue in road base. Master's Thesis, Southeast University, China, 2019 (in Chinese). 李明. 淮北水洗煤矸石在路面基层中的应用研究. 硕士学位论文, 东南大学, 2019. 13 Jiang Z Q, Ji L J, Zuo R S. Journal of China University of Mining & Technology, 2001, 30(2), 4 (in Chinese). 姜振泉, 季梁军, 左如松. 中国矿业大学学报, 2001, 30(2), 4. 14 Sha A M, Hu L Q. China Journal of Highway and Transport, 2008, 21(4), 6 (in Chinese). 沙爱民, 胡力群. 中国公路学报, 2008, 21(4), 6. 15 Jiang Z Q, Zhao D H, Sui W H, et al. Journal of China University of Mining & Technology, 1999, 28(3), 5 (in Chinese). 姜振泉, 赵道辉, 隋旺华, 等. 中国矿业大学学报, 1999, 28(3), 5. 16 Pei F G. Shanxi Science & Technology of Communications, 2009(3), 4 (in Chinese). 裴富国. 山西交通科技, 2009(3), 4. 17 Wang F. Transport Research, 2017, 3(2), 7 (in Chinese). 王峰. 交通运输研究, 2017, 3(2), 7. 18 Yu L L, Wang A G, Zhong X F, et al. Materials Reports, 2024, 38(20), 23080244 (in Chinese). 于乐乐, 王爱国, 仲小凡, 等. 材料导报, 2024, 38(20), 23080244. 19 Hao P W, Xu J Z, Zhou H Z. Journal of Chang'an University (Natural Science Edition), 2004, 24(6), 6 (in Chinese). 郝培文, 徐金枝, 周怀治. 长安大学学报(自然科学版), 2004, 24(6), 6. 20 Peng B, Yuan W J, Li X H, et al. Journal of Highway and Transportation Research and Development, 2005, 22(10), 23 (in Chinese). 彭波, 袁万杰, 李晓华, 等.公路交通科技, 2005, 22(10), 23. 21 Li X J, Zhao L H, Gao S Z, et al. Journal of Highway and Transportation Research and Development, 2022, 39(12), 1. 李秀君, 赵麟昊, 高世柱, 等. 公路交通科技, 2022, 39(12), 1. 22 Chen Z D, Yuan W J, Zheng D Q. Journal of Chongqing Jiaotong University, 2005, 24(4), 5 (in Chinese). 陈忠达, 袁万杰, 郑东启. 重庆交通学院学报, 2005, 24(4), 5. 23 Jia J L, Zhang Y L, Yang Y Q, et al. Yellow River, 2019, 41(12), 6 (in Chinese). 贾敬立, 张渊龙, 杨玉庆, 等. 人民黄河, 2019, 41(12), 6. 24 Hu L Q, Sha A M. China Journal of Highway and Transport, 2012, 25(3), 8 (in Chinese). 胡力群, 沙爱民. 中国公路学报, 2012, 25(3), 8.