Please wait a minute...
材料导报  2025, Vol. 39 Issue (2): 22040252-7    https://doi.org/10.11896/cldb.22040252
  无机非金属及其复合材料 |
骨架密实型水泥稳定煤矸石级配设计与性能研究
景宏君1,2,†,*, 张超伟1,2,†, 高萌1,2, 丁仁红3, 李毅民4, 康明珂1,2, 周子涵1,2, 朱韶峰5
1 西安科技大学建筑与土木工程学院,西安 710054
2 西安科技大学道路工程研究中心,西安 710054
3 安康市交通运输综合执法支队,陕西 安康 725099
4 安康市道路运输服务中心,陕西 安康 725199
5 登封市地方公路管理所,河南 登封 452470
Grading Optimization and Performance Study of Skeleton-dense Cement-stabilized Coal Gangue
JING Hongjun1,2,†,*, ZHANG Chaowei1,2,†, GAO Meng1,2, DING Renhong3, LI Yimin4, KANG Mingke1,2, ZHOU Zihan1,2, ZHU Shaofeng5
1 School of Architecture and Civil Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
2 Road Engineering Research Centre, Xi'an University of Science and Technology, Xi'an 710054, China
3 Ankang Transportation Comprehensive Law Enforcement Detachment, Ankang 725099, Shaanxi, China
4 Ankang Road Transport Service Centre, Ankang 725199, Shaanxi, China
5 Dengfeng Local Road Administration Office, Dengfeng 452470, Henan, China
下载:  全 文 ( PDF ) ( 6578KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为研究级配对水泥稳定煤矸石路用性能的影响,采用陕西省榆林地区小保当煤矿煤矸石作为研究对象,以逐级填充法和K法为基础,根据7 d无侧限抗压强度(UCS)结果优选出适宜的煤矸石粗细集料比例,并确定骨架密实型水泥稳定煤矸石集料的合理级配范围。在此基础上,进行劈裂强度(SS)、抗压回弹模量(CRM)、抗冻性能和收缩特性试验,并将所确定的级配的上限、中值和下限与规范推荐级配中值(GF)下制备的混合料的相关性能进行对比。研究结果表明,当煤矸石粗集料与细集料含量之比为40%~50%时,水泥稳定煤矸石形成骨架密实结构。水泥剂量为5%(质量分数)时,与GF级配试件相比,设计级配中值(TJ2)试件养护7、28、90 d的UCS分别提高38.03%、40.13%、34.93%(7 d UCS>3.0 MPa),养护28 d的耐冻系数提升30.13%,干缩系数减小35.85%。依所设计的级配制备的水泥稳定煤矸石的路用性能优于规范推荐级配。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
景宏君
张超伟
高萌
丁仁红
李毅民
康明珂
周子涵
朱韶峰
关键词:  级配设计  骨架密实  煤矸石  力学性能  抗冻性能    
Abstract: To study the effect of grading on road performance of cement-stabilized gangue, this work utilized the coal gangue from Xiaobaodang coal mine in Yulin, Shaanxi Province as the research object. Based on the grade-by-step filling method and the K method, the optimal ratio of coarse/fine aggregates of coal gangue was determined according to the results of 7 d unconfined compressive strength (UCS), and the appropriate grading range of skeleton-dense cement-stabilized gangue aggregates was then obtained. On this basis, this work carried out relevant tests such as splitting strength (SS), compressive rebound modulus (CRM), frost resistance, and shrinkage characteristics, and made a comparative analysis on the aforementioned performance indexes of the mixtures prepared using the obtained grading range's upper limit, mean value, and lower limit with that prepared using the specification-recommended grading range's mean value (GF). The results showed that a coarse-fine aggregate ratio of coal gangue of 40%—50% could result in a skeleton-dense structure of the cement-stabilized coal gangue. When the cement dosage was 5%, compared with the GF grading specimen, the specimen with the proportion of mean value of the optimized grading (TJ2) exhibited 38.03%, 40.13% and 34.93% higher UCSs after curing for 7, 28, 90 d, respectively (with 7 d UCS>3.0 MPa), and a 30.13% higher coefficient of frost resistance after curing for 28 d, as well as a 35.85% lower coefficient of dry shrinkage. It could be concluded that the cement-stabilized coal gangue prepared using the optimized grading is superior to the product with specification-recommended grading in road performance.
Key words:  grading optimization    skeleton compaction    coal gangue    mechanical property    frost resistance
出版日期:  2025-01-25      发布日期:  2025-01-21
ZTFLH:  U414  
基金资助: 国家自然科学基金(42072319)
通讯作者:  *景宏君,博士,教授,研究方向为道路工程新型结构与材料。张超伟,西安科技大学硕士研究生,在景宏君教授的指导下进行道路材料研究。jinghongjun@xust.edu.cn   
作者简介:  †共同第一作者
引用本文:    
景宏君, 张超伟, 高萌, 丁仁红, 李毅民, 康明珂, 周子涵, 朱韶峰. 骨架密实型水泥稳定煤矸石级配设计与性能研究[J]. 材料导报, 2025, 39(2): 22040252-7.
JING Hongjun, ZHANG Chaowei, GAO Meng, DING Renhong, LI Yimin, KANG Mingke, ZHOU Zihan, ZHU Shaofeng. Grading Optimization and Performance Study of Skeleton-dense Cement-stabilized Coal Gangue. Materials Reports, 2025, 39(2): 22040252-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.22040252  或          https://www.mater-rep.com/CN/Y2025/V39/I2/22040252
1 Li J X, Shu Z L, Sun Q M, et al. Materials Reports, 2022, 36(S2), 252 (in Chinese).
李佳鑫, 舒志乐, 孙启明, 等. 材料导报, 2022, 36(S2), 252.
2 Tian X Q, Yang F L, Ma Z B, et al. Bulletin of the Chinese Ceramic So-ciety, 2018, 37(4), 7 (in Chinese).
田秀青, 杨凤玲, 马志斌, 等. 硅酸盐通报, 2018, 37(4), 7.
3 Ge J Y, Zhu H G, Li Z H, et al. Materials Reports, 2021, 35(S2), 218 (in Chinese).
葛洁雅, 朱红光, 李宗徽, 等. 材料导报, 2021, 35(S2), 218.
4 Yang Y M, Kong D S. Yunnan Chemical Technology, 2020, 47(4), 3 (in Chinese).
杨依民, 孔德顺. 云南化工, 2020, 47(4), 3.
5 Zhao S J, Zhang C L, Yang X S. Development Guide to Building Mate-rials, 2012(24), 5 (in Chinese).
赵双菊, 张彩朗, 杨小姝. 建材发展导向, 2012(24), 5.
6 Zhu X L, Gao Y X, Guo Z H, et al. Concrete, 2021(6), 6 (in Chinese).
祝小靓, 高育欣, 郭照恒, 等. 混凝土, 2021(6), 6.
7 Zhang N, Liu X M, Sun H H. Metal Mine, 2014(3), 6 (in Chinese).
张娜, 刘晓明, 孙恒虎. 金属矿山, 2014(3), 6.
8 Moghadam M J, Ajalloeian R, Hajiannia A. Construction and Building Materials, 2019, 221, 84.
9 Li Z X,Guo T T, Chen Y Z, et al. Materials Research Express, 2021, 8(12), 125502.
10 Guan J F, Lu M, Yao X H, et al. Crystals, 2021, 11(8), 993.
11 Peng Y, Yang J S, Liu J H. Applied Mechanics & Materials, 2012, 1802(178-181), 1226.
12 Li M. Application research on Huaibei water-washed coal gangue in road base. Master's Thesis, Southeast University, China, 2019 (in Chinese).
李明. 淮北水洗煤矸石在路面基层中的应用研究. 硕士学位论文, 东南大学, 2019.
13 Jiang Z Q, Ji L J, Zuo R S. Journal of China University of Mining & Technology, 2001, 30(2), 4 (in Chinese).
姜振泉, 季梁军, 左如松. 中国矿业大学学报, 2001, 30(2), 4.
14 Sha A M, Hu L Q. China Journal of Highway and Transport, 2008, 21(4), 6 (in Chinese).
沙爱民, 胡力群. 中国公路学报, 2008, 21(4), 6.
15 Jiang Z Q, Zhao D H, Sui W H, et al. Journal of China University of Mining & Technology, 1999, 28(3), 5 (in Chinese).
姜振泉, 赵道辉, 隋旺华, 等. 中国矿业大学学报, 1999, 28(3), 5.
16 Pei F G. Shanxi Science & Technology of Communications, 2009(3), 4 (in Chinese).
裴富国. 山西交通科技, 2009(3), 4.
17 Wang F. Transport Research, 2017, 3(2), 7 (in Chinese).
王峰. 交通运输研究, 2017, 3(2), 7.
18 Yu L L, Wang A G, Zhong X F, et al. Materials Reports, 2024, 38(20), 23080244 (in Chinese).
于乐乐, 王爱国, 仲小凡, 等. 材料导报, 2024, 38(20), 23080244.
19 Hao P W, Xu J Z, Zhou H Z. Journal of Chang'an University (Natural Science Edition), 2004, 24(6), 6 (in Chinese).
郝培文, 徐金枝, 周怀治. 长安大学学报(自然科学版), 2004, 24(6), 6.
20 Peng B, Yuan W J, Li X H, et al. Journal of Highway and Transportation Research and Development, 2005, 22(10), 23 (in Chinese).
彭波, 袁万杰, 李晓华, 等.公路交通科技, 2005, 22(10), 23.
21 Li X J, Zhao L H, Gao S Z, et al. Journal of Highway and Transportation Research and Development, 2022, 39(12), 1.
李秀君, 赵麟昊, 高世柱, 等. 公路交通科技, 2022, 39(12), 1.
22 Chen Z D, Yuan W J, Zheng D Q. Journal of Chongqing Jiaotong University, 2005, 24(4), 5 (in Chinese).
陈忠达, 袁万杰, 郑东启. 重庆交通学院学报, 2005, 24(4), 5.
23 Jia J L, Zhang Y L, Yang Y Q, et al. Yellow River, 2019, 41(12), 6 (in Chinese).
贾敬立, 张渊龙, 杨玉庆, 等. 人民黄河, 2019, 41(12), 6.
24 Hu L Q, Sha A M. China Journal of Highway and Transport, 2012, 25(3), 8 (in Chinese).
胡力群, 沙爱民. 中国公路学报, 2012, 25(3), 8.
[1] 薛赞, 晋玺, 毛周朱, 兰爱东, 王大雨, 乔珺威. 热机械处理提高Cr47Ni33Co10Fe10多组元共晶合金力学性能[J]. 材料导报, 2025, 39(3): 23120100-6.
[2] 刘晓楠, 张春晓, 王世合, 张高展, 毛继泽, 曹少华, 刘国强. 养护制度对添加纳米SiO2超高性能混凝土动静态力学性能的影响[J]. 材料导报, 2025, 39(2): 23070188-7.
[3] 曹雷刚, 侯鹏宇, 杨越, 蒙毅, 刘园, 崔岩. AlCoCrFeNix高熵合金高温热处理微观组织演变及力学性能[J]. 材料导报, 2025, 39(2): 23120247-7.
[4] 马豪达, 白银, 陈波, 葛龙甄, 白延杰, 张丰. 水胶比和橡胶掺量对砂浆力学性能及能量演化规律的影响[J]. 材料导报, 2025, 39(1): 23120226-7.
[5] 王子健, 孙舒蕾, 肖寒, 冉旭东, 陈强, 黄树海, 赵耀邦, 周利, 黄永宪. 搅拌摩擦固相沉积增材制造研究现状[J]. 材料导报, 2024, 38(9): 22100039-16.
[6] 白云官, 吉小超, 李海庆, 魏敏, 于鹤龙, 张伟. 原位合成的钛合金@CNTs粉体SPS制备TiC/Ti复合材料的微结构与性能[J]. 材料导报, 2024, 38(9): 22120175-7.
[7] 邝亚飞, 李永斌, 张艳, 陈峰华, 孙志刚, 胡季帆. SPS烧结Ni-Mn-In合金的马氏体相变和力学性能研究[J]. 材料导报, 2024, 38(9): 23110107-6.
[8] 王艳, 高腾翔, 张少辉, 李文俊, 牛荻涛. 不同形态回收碳纤维水泥基材料的力学与导电性能[J]. 材料导报, 2024, 38(9): 23010043-9.
[9] 常川川, 李菊, 李晓红, 金俊龙, 张传臣, 季亚娟. 热处理对同质异态TC17钛合金线性摩擦焊接头的影响[J]. 材料导报, 2024, 38(8): 22080152-5.
[10] 郑思铭, 李蔚, 杨函瑞, 陈松, 魏取福. 3D打印聚乳酸的改性研究与应用进展[J]. 材料导报, 2024, 38(8): 22100107-10.
[11] 郑琨鹏, 葛好升, 李正川, 刘贵应, 田光文, 王万值, 徐国华, 孙振平. 河砂与石英砂对蒸养超高性能混凝土(UHPC)性能的影响及机理[J]. 材料导报, 2024, 38(7): 22040216-6.
[12] 吕晶, 赵欢, 张金翼, 席培峰. 冻融循环作用下不同含水率灰土的细微观结构与宏观力学性能[J]. 材料导报, 2024, 38(7): 22110321-7.
[13] 刘斌, 索超, 李忠华, 蒯泽宙, 陈彦磊, 唐秀. 选区激光熔化成形铜合金研究进展[J]. 材料导报, 2024, 38(7): 22080129-11.
[14] 凌子涵, 王利卿, 张震, 赵占勇, 白培康. 镁合金电弧增材技术基本工艺及工艺因素影响综述[J]. 材料导报, 2024, 38(7): 22090013-9.
[15] 杨佳琛, 江海涛, 田世伟, 陈飞达. 基于电子结构理论的微合金Q355B热轧钢力学性能预测[J]. 材料导报, 2024, 38(7): 22090319-5.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed