Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (14): 52-56    https://doi.org/10.11896/j.issn.1005-023X.2017.014.011
  材料研究 |
癸酸-棕榈酸-硬脂酸/膨胀石墨蓄能复合相变材料的制备与热性能研究*
黄雪1, 崔英德2, 尹国强1, 张步宁1, 冯光炷1
1 仲恺农业工程学院化学化工学院, 广州 510225;
2 广州科技职业技术学院, 广州510450;
Preparation and Thermal Properties of Capric-palmitic-stearic Acid/Expanded Graphite Composite Phase Change Material for Energy Storage
HUANG Xue1, CUI Yingde2, YIN Guoqiang1, ZHANG Buning1, FENG Guangzhu1
1 College of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225;
2 Guangzhou Vocational College of Science and Technology, Guangzhou 510450;
下载:  全 文 ( PDF ) ( 2257KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 癸酸、棕榈酸、硬脂酸形成的三元低共熔物与膨胀石墨通过真空浸渍法制备出新型癸酸-棕榈酸-硬脂酸/膨胀石墨储能复合相变材料,适宜的质量比为m(癸酸)∶m(棕榈酸)∶m(硬脂酸)=77.0∶11.5∶11.5,m(癸酸-棕榈酸-硬脂酸)∶m(膨胀石墨)=13∶1。采用DSC、FT-IR、TG、SEM、冷热循环实验和蓄/放热实验研究了材料的结构和热性能。SEM和FT-IR分析结果表明低共熔物与膨胀石墨是通过物理吸附方式结合。DSC结果表明复合材料融化和凝固时的相变温度为28.93 ℃和16.32 ℃,相变潜热为137.38 J/g和141.51 J/g。TG结果表明复合相变材料在100 ℃以下具有良好的热稳定性。500次热循环和蓄/放热实验表明循环前后复合相变材料的热可靠性好,且使用寿命长。膨胀石墨的添加改善了复合材料的热性能和热导率。研究表明制备的新型复合相变材料具有合适的相变温度、较高的相变潜热和热导率,热性能稳定可靠,可用于低温蓄能领域。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
黄雪
崔英德
尹国强
张步宁
冯光炷
关键词:  脂肪酸  三元共熔  膨胀石墨  相变材料  热性能    
Abstract: A novel capric-palmitic-stearic acid/expanded graphite composite phase change material (CPCM) has been prepared by vacuum impregnation method through phase change material (PCM) derived from a ternary eutectic, which was a mixture of capric acid, palmitic acid and stearic acid. The appropriate mass ratio were m(CA)∶m(PA)∶m(SA)=77.0∶11.5∶11.5 and m(CA-PA-SA)∶m(EG)=13∶1. Different analytical methods including DSC, FT-IR, TG, SEM, cold/thermal cycling test and thermal storage/release performance methods were adopted to study the structure and thermal properties of the material. The SEM and FT-IR results showed that CA-PA-SA was dispersed into the pores of EG through physical interaction. The DSC results indicated that the melting and freezing temperatures of CA-PA-SA/EG CPCM were 28.93 ℃ and 16.32 ℃,and the latent heats were 137.38 J/g and 141.51 J/g. TG analysis results revealed that CA-PA-SA/EG CPCM had a reliable thermal stability under 100 ℃. The results of 500 thermal cycles and thermal storage/release performance showed that CA-PA-SA/EG CPCM had good thermal reliability and long service life. Thermal conductivity of CA-PA-SA/EG CPCM was improved by high thermal conductivity of the EG. All the results indicated that the prepared CA-PA-SA/EG CPCM had proper phase change temperature, high latent heat and thermal conductivity, good thermal reliability and stability. The proposed new material is suitable for application in energy storage.
Key words:  fatty acids    ternary eutectic    expanded graphite    phase change material    thermal properties
出版日期:  2017-07-25      发布日期:  2018-05-04
ZTFLH:  TB332  
  TU599  
基金资助: *国家自然科学基金(31401526;31371880);广东省普通高校特色创新项目(2016KTSCX059)
作者简介:  黄雪:女,1982年生,博士,助理研究员,研究方向为绿色节能材料、生物质材料 E-mail:huangxue0206@126.com 冯光炷:通讯作者,男,1961年生,博士,教授,研究方向为绿色化工、生物质开发与利用 E-mail:fengguangzhu@163.com
引用本文:    
黄雪, 崔英德, 尹国强, 张步宁, 冯光炷. 癸酸-棕榈酸-硬脂酸/膨胀石墨蓄能复合相变材料的制备与热性能研究*[J]. 《材料导报》期刊社, 2017, 31(14): 52-56.
HUANG Xue, CUI Yingde, YIN Guoqiang, ZHANG Buning, FENG Guangzhu. Preparation and Thermal Properties of Capric-palmitic-stearic Acid/Expanded Graphite Composite Phase Change Material for Energy Storage. Materials Reports, 2017, 31(14): 52-56.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.014.011  或          https://www.mater-rep.com/CN/Y2017/V31/I14/52
1 Sari A, Kaygusuz K. Thermal energy storage system using some fatty acids as latent heat energy storage materials[J]. Energy Sources,2001,23(3):275.
2 Alkan C, Kaya K, Sari A. Preparation, thermal properties and thermal reliability of form-stable paraffin/polypropylene composite for thermal energy storage[J].J Polym Environ,2009,17(4):254.
3 Dan N N, Haghighat F. Thermal energy storage with phase change material—A state-of-the art review[J]. Sustainable Cities Soc,2014,10:87.
4 Zhang Z G, Zhang N, Peng J, et al. Preparation and thermal energy storage properties of paraffin/expanded graphite composite phase change material[J]. Appl Energy,2012,91(1):426.
5 Fauzi H, Metselaar H S C, Mahlia T M I, et al. Sodium laurate enhancements the thermal properties and thermal conductivity of eutectic fatty acid as phase change material (PCM)[J]. Solar Energy,2014,102(4):333.
6 Kenisarin M M. Thermophysical properties of some organic phase cha-nge materials for latent heat storage: A review[J]. Solar Energy,2014,107(9):553.
7 Pielichowska K, Pielichowski K. Phase change materials for thermal energy storage[J]. Progress Mater Sci,2014,65(10):67.
8 Feldman D, Shapiro M M, Banu D, et al. Fatty acids and their mixtures as phase-change materials for thermal-energy storage[J]. Solar Energy Mater,1989,18(3-4):201.
9 Hasan A, Sayigh A A. Some fatty acids as phase change thermal energy storage materials[J]. Renewable Energy,1994,4(1):495.
10 Inoue T, Hisatsugu Y, Ishikawa R, et al. Solid-liquid phase beha-vior of binary fatty acid mixtures: 3. Mixtures of oleic acid with capric acid (decanoic acid) and caprylic acid (octanoic acid)[J]. Chem Phys Lipids,2004,127(2):143.
11 Rozanna D, Chuah T G, Salmiah A, et al. Fatty acids phase change materials(PCMs) for thermal energy storage: A review[J]. Int J Green Energy,2005,1(4):495
12 Sari A, Alkan C, Karaipekli A, et al. Preparation, characterization and thermal properties of styrene maleic anhydride copolymer (SMA)/fatty acid composites as form stable phase change materials[J]. Energy Conversion Management,2008,49(2):373.
13 Sari A, Karaipekli A, Kaygusuz K. Fatty acid/expanded graphite composites as phase change material for latent heat thermal energy storage[J]. Energy Sources Part A-Recovery Utilization and Environmental Effects,2008, part A(5):464.
14 Wang L, Meng D. Fatty acid eutectic/polymethyl methacrylate composite as form-stable phase change material for thermal energy sto-rage[J]. Appl Energy,2010,87(8):2660.
15 He H, Yue Q, Gao B, et al. The effects of compounding conditions on the properties of fatty acids eutectic mixtures as phase change materials[J]. Energy Conversion Management,2013,69(5):116.
16 Zhang N, Yuan Y, Wang X, et al. Preparation and characterization of lauric-myristic-palmitic acid ternary eutectic mixtures/expanded graphite composite phase change material for thermal energy storage[J]. Chem Eng J,2013,231(s11-12):214.
17 Yuan Y, Yuan Y, Zhang N, et al. Preparation and thermal characterization of capric-myristic-palmitic acid/expanded graphite compo-site as phase change material for energy storage[J]. Mater Lett,2014,125(24):154.
18 Li Y T, Yan H, Wang H T, et al. Phase transformation kinetics of phase change materials of expanded graphite/stearic acid composite[J]. Chin J Mater Res,2016,30(12):921(in Chinese).
李云涛, 晏华, 汪宏涛, 等. 膨胀石墨/硬脂酸复合相变材料的相变动力学[J]. 材料研究学报,2016,30(12):921.
19 Huang X, Cui Y D, Zhang B N, et al. Review on heat transfer and liquid phase leakage of fatty acids phase change materials[J]. Chem Ind Eng Progress,2014,33(10):2676(in Chinese).
黄雪, 崔英德, 张步宁, 等. 脂肪酸类相变材料传热及液相渗漏的研究进展[J]. 化工进展,2014,33(10):2676.
[1] 龙勇, 王宇, 刘天乐, 王亚洲. 相变微胶囊保温砂浆的制备及性能[J]. 材料导报, 2024, 38(9): 22110170-6.
[2] 郑思铭, 李蔚, 杨函瑞, 陈松, 魏取福. 3D打印聚乳酸的改性研究与应用进展[J]. 材料导报, 2024, 38(8): 22100107-10.
[3] 马超, 解帅, 王永超, 冀志江, 吴子豪, 王静. 用于红外和雷达波隐身的水泥基复合材料[J]. 材料导报, 2024, 38(5): 23080165-9.
[4] 成鑫磊, 穆锐, 孙涛, 刘元雪, 胡志德, 蒋昊洋. 固液相变材料的封装制备及在建筑领域的研究进展[J]. 材料导报, 2024, 38(5): 23080048-15.
[5] 赵荣, 韩子夜, 吴飞翔, 刘太奇, 李谭秋. 基于十水硫酸钠的个体防护材料的制备及性能[J]. 材料导报, 2024, 38(3): 22090074-5.
[6] 刘世盟, 郭乃胜, 崔世超, 褚召阳, 赵近川. PDA/GO/PUF聚氨酯泡沫的力学与隔热性能及其微观机理[J]. 材料导报, 2024, 38(22): 23110080-9.
[7] 田小飞, 王林山, 梁雪冰, 郑逢时, 胡强. 电力电子器件用液冷针翅散热器的研究进展[J]. 材料导报, 2024, 38(21): 23070138-11.
[8] 李思盈, 周超. 海泡石纤维增强二氧化硅气凝胶的制备及性能[J]. 材料导报, 2024, 38(19): 23030233-9.
[9] 张维, 张义博, 张琪, 姚继明, 郝尚. PDMS包封CPCM制备三明治结构织物及热性能分析[J]. 材料导报, 2024, 38(19): 23050176-5.
[10] 马晓勇, 陈叔平, 金树峰, 朱鸣, 王洋, 熊珍艳, 吴慧敏, 于洋, 王鑫. 低温容器用多层绝热材料的绝热性能研究进展[J]. 材料导报, 2024, 38(1): 22050027-11.
[11] 张庆宇, 罗京, 赵毅, 刘英, 张新永. 微波加热集料的传热特性及其影响因素[J]. 材料导报, 2023, 37(8): 21110074-8.
[12] 刘文憬, 李元东, 宋赵熙, 毕广利, 杨昊坤, 曹杨婧. Sr+Er复合变质对AlSi10MnMg合金微观组织、导热及力学性能的影响[J]. 材料导报, 2023, 37(6): 21090239-7.
[13] 吴远东, 郑维爽, 李源遽, 都贝宁, 张兴儒, 李家龙, 于盛洋, 肖忆楠, 赖琛, 盛立远, 黄艺. 聚羟基脂肪酸酯(PHAs)基止血材料研究进展[J]. 材料导报, 2023, 37(3): 21010218-9.
[14] 于本田, 杨玉祥, 刘江, 王永刚, 王朋勇, 谢超. 改性SiO2气凝胶水泥基复合砂浆性能及冻融损伤研究[J]. 材料导报, 2023, 37(23): 22040197-6.
[15] 曾关跃, 高专, 熊玉竹. 多壁碳纳米管负载银/微晶纤维素定型复合相变材料的制备及性能研究[J]. 材料导报, 2023, 37(23): 22040102-6.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed