Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (5): 765-771    https://doi.org/10.11896/j.issn.1005-023X.2018.05.012
  材料综述 |
油脂加氢制备生物柴油用催化剂的研究进展
王霏1, 徐俊明1, 2, 蒋剑春1, 2, 刘朋1, 周明浩1, 王奎1
1 中国林业科学研究院林产化学工业研究所,生物质化学利用国家工程实验室,国家林业局林产化学工程重点开放实验室,江苏省生物质能源与材料重点实验室,南京 210042;
2 江苏强林生物能源材料有限公司,溧阳 213364
Advances in Catalysts Applied to Bio-diesel Production from Oil Hydrotreatment
WANG Fei1, XU Junming1,2, JIANG Jianchun1,2, LIU Peng1, ZHOU Minghao1, WANG Kui1
1 Key Laboratory of Biomass Energy Sources and Materials, Key and Open Laboratory of Forest Chemical Engineering of SFA, National Engineering Laboratory for Biomass Chemical Utilization, Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042;
2 Jiangsu Qianglin Biomass Energy Co.,Ltd.,Liyang 213364
下载:  全 文 ( PDF ) ( 1253KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 利用油脂加氢制备的第二代生物柴油具有辛烷值高、氧含量低等特点,可以直接与石化柴油混合使用。第二代生物柴油的制备和使用可以有效降低对不可再生的化石燃料的依赖,并能缓解当前严重的环境问题。在第二代生物柴油的研究中,催化剂的研发至关重要。本文综述了油脂加氢领域的催化剂的种类、催化转化路径以及最前沿的研究进展。其中,贵金属基催化剂催化加氢活性比较高,主要以脱羧和脱羰反应路径为主,但是制备成本昂贵;传统的钼基催化剂主要以加氢脱氧反应为主,但是使用过程中需要硫化,对环境造成一定的污染;新型的碳化钼基催化剂和镍基催化剂的催化反应路径分别为加氢脱氧和脱羧-脱羰;以沸石分子筛作载体时,油脂加氢产物中异构化烃类得率较高。同时,文章还对催化剂的研究发展提出建议和展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王霏
徐俊明
蒋剑春
刘朋
周明浩
王奎
关键词:  油脂  加氢  第二代生物柴油  催化剂  反应路径    
Abstract: The second generation bio-diesel has the properties of high octane number, low oxygen content and can blend directly with present diesel. The production and application of the second generation bio-diesel can effectively reduce the usage of limi-ted fossil fuel, and thus improve the quality of environment. The research of catalysts is considered as the most crucial part during production of second generation bio-diesel. This article reviews the category, catalytic reaction pathway and the forefront research of catalysts used in oil hydrotreatment. Noble metal catalysts possess high activity by decarboxylation/decarbonylation pathway, but they are expensive. The reaction pathway of conventional molybdenum catalyst is mainly hydrodeoxygenation. Sulfuration of catalyst is necessary before hydrotreatment, which will lead to serious environmental pollution. New-style molybdenum carbide catalyst and nickel catalyst perform catalytic reaction by hydrodeoxygenation pathway and decarboxylation/decarbonylation pathway, respectively. Zeolite as support improves the yield of isomerization alkane in products. Moreover, the prospect of future research of the catalyst is provided.
Key words:  oil    hydrotreatment    second generation bio-diesel    catalyst    reaction pathway
出版日期:  2018-03-10      发布日期:  2018-03-10
ZTFLH:  TQ644.5  
基金资助: 中国林科院中央级公益性科研院所基本科研业务费重点项目(CAFYBB2017ZC004)
通讯作者:  蒋剑春:通信作者,男,研究员,主要从事生物质能源与活性炭方面的研究 E-mail:bio-energy@163.com   
作者简介:  王霏:男,1990年生,博士研究生,主要从事生物质能源与材料的研究 E-mail:feiwang_office@yeah.net
引用本文:    
王霏, 徐俊明, 蒋剑春, 刘朋, 周明浩, 王奎. 油脂加氢制备生物柴油用催化剂的研究进展[J]. 《材料导报》期刊社, 2018, 32(5): 765-771.
WANG Fei, XU Junming, JIANG Jianchun, LIU Peng, ZHOU Minghao, WANG Kui. Advances in Catalysts Applied to Bio-diesel Production from Oil Hydrotreatment. Materials Reports, 2018, 32(5): 765-771.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.05.012  或          https://www.mater-rep.com/CN/Y2018/V32/I5/765
1 Huber G W, Iborra S, Corma A. Synthesis of transportation fuels from biomass: Chemistry, catalysts, and engineering[J].Chemical Reviews,2006,106(9):4044.
2 Barakos N, Pasias S, Papayannakos N. Transesterification of triglycerides in high and low quality oil feeds over an HT2 hydrotalcite catalyst[J].Bioresource Technology,2008,99(11):5037.
3 Ryymin E M, Honkela M L, Viljava T R, et al. Insight to sulfur species in the hydrodeoxygenation of aliphatic esters over sulfided NiMo/γ-Al2O3 catalyst[J].Applied Catalysis A:General,2009,358(1):42.
4 Donnis B, Egeberg R G, Blom P, et al. Hydroprocessing of bio-oils and oxygenates to hydrocarbons. Understanding the reaction routes[J].Topics in Catalysis,2009,52(3):229.
[1] 马润山, 王海燕, 张琦, 杨建新, 汤彬, 李睿, 李双寿, 林万明, 范晋平. MXene对锌-空气电池双金属催化剂催化性能的影响[J]. 材料导报, 2025, 39(2): 24020010-8.
[2] 李歌, 马子然, 闾菲, 彭胜攀, 佟振伟. 基于机器学习高通量筛选二氧化碳还原电催化剂的研究进展[J]. 材料导报, 2025, 39(1): 23110048-13.
[3] 唐江城, 赵先兴, 蔡润田, 杨城昊, 池波. Mn离子掺杂Pr0.5Ba0.5Fe0.9Mn0.1O3-δ钙钛矿SOEC阴极电解CO2性能研究[J]. 材料导报, 2024, 38(8): 23040185-6.
[4] 方瑜, 李靖, 孔维超, 周雪, 徐林, 孙冬梅, 唐亚文. 纳米碳片负载Mott-Schottky型Co/Co9S8异质结的原位合成及电催化性能研究[J]. 材料导报, 2024, 38(8): 23040234-7.
[5] 尹燕, 尹硕尧, 陈斌, 冯英杰, 张俊锋. 高性能Ir基阳极双催化层阴离子交换膜电解水[J]. 材料导报, 2024, 38(6): 23040182-7.
[6] 贾飞宏, 卫学玲, 包维维, 邹祥宇. MoS2/Ni3S2/NF双功能电催化剂用于高效全水解[J]. 材料导报, 2024, 38(4): 22040365-7.
[7] 王金涛, 段体岗, 郭建章, 马力, 余聚鑫, 张海兵. 三维碳纤维基复合材料及其在海水溶解氧电池中的应用性能[J]. 材料导报, 2024, 38(4): 22040345-6.
[8] 高娜, 庞佩琦, 李智, 牟国栋, 崔天成, 杜贤龙, 李涛, 肖国萍. 电解工艺条件对Cu基催化剂电化学还原CO2的产物分布影响[J]. 材料导报, 2024, 38(24): 23100052-5.
[9] 彭林森, 李凝, 蒋武, 练彩霞. A位缺陷对LaxNiO3+δ在苯酚加氢脱氧反应中催化性能的影响[J]. 材料导报, 2024, 38(23): 23070161-5.
[10] 王帆, 赵宇辰, 郑文跃. 氨分解制氢钌基催化剂的研究进展[J]. 材料导报, 2024, 38(19): 23050178-13.
[11] 罗宁, 高凤雨, 陈都, 张辰骁, 段二红, 赵顺征, 易红宏, 唐晓龙. CeMn复合氧化物的制备及氯苯催化氧化性能[J]. 材料导报, 2024, 38(16): 23050133-9.
[12] 黄勇, 郭冲霄, 倪佳苗, 刘悦, 范同祥. 金属催化辅助无转移石墨烯薄膜制备技术研究进展[J]. 材料导报, 2024, 38(15): 23050126-15.
[13] 刘方旺, 王建花, 于明月, 张莉, 张倩, 孟建华, 高庆平, 江津河. 构建多活性位点的单组分金属卤化物@吡啶/咪唑多孔有机框架用于CO2的高效吸收与催化[J]. 材料导报, 2024, 38(15): 23030227-10.
[14] 谢雨秋, 郭伟. 料浆I/C比对PEMFC合金催化剂氧传质阻力的影响规律[J]. 材料导报, 2024, 38(14): 23010027-5.
[15] 陈亚楠, 刘培涛, 祖延清, 韩逢博, 李晓东, 毕鹏飞, 冯爱玲. 基于N,P共掺杂碳纳米片的富S空位Co/Co9S8复合物作为双功能催化剂用于可充锌-空气电池[J]. 材料导报, 2024, 38(12): 23010013-5.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed