Please wait a minute...
材料导报  2026, Vol. 40 Issue (2): 25010025-6    https://doi.org/10.11896/cldb.25010025
  金属与金属基复合材料 |
激光选区熔化成形Ti-6Al-4V-0.5B合金的混晶组织与压缩性能研究
王利卿1,2,*, 李云龙1, 马凯1, 张震1, 赵占勇1, 白培康1
1 中北大学材料科学与工程学院,太原 030051
2 中国船舶集团汾西重工有限责任公司,太原 030027
Microstructure and Compression Properties of Ti-6Al-4V-0.5B Alloy Prepared by Selective Laser Melting
WANG Liqing1,2,*, LI Yunlong1, MA Kai1, ZHANG Zhen1, ZHAO Zhanyong1, BAI Peikang1
1 School of Materials Science and Engineering, North University of China, Taiyuan 030051, China
2 China Shipbuilding Industry Corporation Fenxi Heavy Industry Co., Ltd., Taiyuan 030027, China
下载:  全 文 ( PDF ) ( 27500KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 针对激光选区熔化(Selective laser melting,SLM)成形Ti-6Al-4V(TC4)合金中粗大的柱状初生β-Ti晶粒,本工作通过添加B元素开发出了具有混晶组织的SLM成形TC4-0.5B合金。研究了激光功率和扫描速率对TC4-0.5B合金微观组织与力学性能的影响规律。结果表明:SLM成形TC4-0.5B合金的混晶组织表现为熔池边部呈现尺寸约5 μm的等轴状初生β-Ti晶粒,熔池心部呈现宽度约2 μm的柱状初生β-Ti晶粒。此外,熔池内Ti+B原位反应生成针棒状或网络状TiB分布于初生β-Ti晶粒的晶界处。激光功率增加对熔池形貌和微观组织的影响较小,使得合金的抗压强度、屈服强度和断裂应变均未发生明显变化,分别维持在1 729~1 767 MPa、1 331~1 347MPa和10%~12%。随着扫描速率增加,熔池尺寸减小,等轴晶比例增加,使得合金的抗压强度由1 760 MPa增加到1 837 MPa,屈服强度由1 331 MPa增加到1 472 MPa,而断裂应变则由11%减小到8%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王利卿
李云龙
马凯
张震
赵占勇
白培康
关键词:  激光选区熔化  Ti-6Al-4V-0.5B合金  初生β-Ti晶粒  压缩性能    
Abstract: For coarse columnar prior-β-Ti grains in Ti-6Al-4V (TC4) alloy formed by selective laser melting (SLM), this study developed a SLM-formed TC4-0.5B alloy with a mixed grain structure. The influence of laser power and scanning rate on the microstructure and compression properties of TC4-0.5B alloy was studied. The results showed that the mixed grain structure of TC4-0.5B alloy exhibited equiaxed prior-β-Ti grains with a size of about 5 μm at the edge of the melt pool, and columnar prior-β-Ti grains with a width of about 2 μm at the center of the melt pool. In addition, the in-situ reaction of Ti+B in the melt pool generates needle-like or network-like TiB distributed at the grain boundaries of prior-β-Ti grains. The increase in laser power has little effect on the morphology and microstructure of the melt pool, resulting in no significant changes in the compressive strength, yield strength and fracture strain of the alloy, which remain at 1 729—1 767 MPa, 1 331—1 347 MPa, and 10%—12%, respectively. As the scanning rate increases, the size of the melt pool decreases and the proportion of equiaxed grains increases, resulting in an increase in the compressive strength of the alloy from 1 760 MPa to 1 837 MPa and yield strength from 1 331 MPa to 1 472 MPa, respectively, while the fracture strain decreases from 11% to 8%.
Key words:  selective laser melting    Ti-6Al-4V-0.5B alloy    prior-β-Ti grains    compression property
出版日期:  2026-01-25      发布日期:  2026-01-27
ZTFLH:  TG146.2+3  
基金资助: 国家自然科学基金青年项目(52305430);山西省基础研究计划资助项目(202203021212150);中北大学高层次人才科研启动费(11013110)
通讯作者:  *王利卿,博士,中北大学材料科学与工程学院副教授。目前主要研究领域为增材制造金属材料的开发及微观组织与力学性能调控。wlq881120@163.com   
引用本文:    
王利卿, 李云龙, 马凯, 张震, 赵占勇, 白培康. 激光选区熔化成形Ti-6Al-4V-0.5B合金的混晶组织与压缩性能研究[J]. 材料导报, 2026, 40(2): 25010025-6.
WANG Liqing, LI Yunlong, MA Kai, ZHANG Zhen, ZHAO Zhanyong, BAI Peikang. Microstructure and Compression Properties of Ti-6Al-4V-0.5B Alloy Prepared by Selective Laser Melting. Materials Reports, 2026, 40(2): 25010025-6.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.25010025  或          https://www.mater-rep.com/CN/Y2026/V40/I2/25010025
1 Li Z, Fan L, Ma L, et al. Journal of Materials Science and Technology, 2025, 222, 228.
2 Abd-Elaziem W, Darwish M A, Hamada A, et al. Materials and Design, 2024, 241, 112850.
3 Li Y, Zhao Y Q, Zeng W D. Materials Reports, 2020, 34(S1), 280(in Chinese).
李毅, 赵永庆, 曾卫东. 材料导报, 2020, 34(S1), 280.
4 Hao F, Xin S W, Mao Y C, et al. Materials Reports, 2020, 34(S1), 293(in Chinese).
郝芳, 辛社伟, 毛友川, 等. 材料导报, 2020, 34(S1), 293.
5 Xiang W M, Wang H Q, Peng F, et al. The Chinese Journal of Nonferrous Metals, 2024, 34(8), 2511(in Chinese).
项炜明, 王颢琦, 彭凡, 等. 中国有色金属学报, 2024, 34(8), 2511.
6 Ma H Y, Wang J C, Qin P, et al. Journal of Materials Science and Technology, 2024, 183, 32.
7 Srivastava M, Jayakumar V, Udayan Y, et al. Applied Materials Today, 2024, 41, 102481.
8 Wang L Q, Ling Z H, Zhao Z Y, et al. Materials Reports, 2023, 37(22), 167(in Chinese).
王利卿, 凌子涵, 赵占勇, 等. 材料导报, 2023, 37(22), 167.
9 Ahsan M N, Pinkerton A J, Moat R J, et al. Materials Science and Engineering A, 2011, 528, 7648.
10 Lunt D, Ho A, Davis A, et al. Materials Science and Engineering A, 2020, 788, 139608.
11 Wilson-Heid A E, Wang Z Q, McCornac B, et al. Materials Science and Engineering A, 2017, 706, 287.
12 Carroll B E, Palmer T A, Allison M. Acta Materialia, 2015, 87, 309.
13 Wang X, Zhang L J, Ning J, et al. Additive Manufacturing, 2021, 48, 102442.
14 Han J, Zhang G Y, Chen X Y, et al. Materials Science & Engineering A, 2022, 856, 143946.
15 Gou J, Wang Z J, Hu S S, et al. Materials Science and Engineering A, 2020, 798, 140160.
16 Meng X, Min J, Sun Z G, et al. Composites Part B: Engineering, 2021, 212, 108667.
17 Wang X, Zhang L J, Ning J, et al. Additive Manufacturing, 2021, 45, 102045.
18 Chao Q, Mateti S, Annasamy M, et al. Additive Manufacturing, 2021, 46, 102173.
19 Bermingham M J, Kent D, Zhan H, et al. Acta Materialia, 2015, 91, 289.
20 Todaro C J, Easton M A, Qiu D, et al. Nature Communication, 2020, 11, 142.
21 McAndrew A R, Rosales M A, Colegrove P A, et al. Additive Manufacturing, 2018, 21, 340.
22 Donoghue J, Antonysamy A A, Martina F, et al. Materials Characterization, 2016, 114, 130.
23 Volegrove P A, Donoghue J, Martina F, et al. Scripta Materialia, 2017, 135, 111.
24 Ju J, Li J J, Yang C, et al. Materials Science and Engineering A, 2021, 802, 140673.
25 Wang L Q, Zhang Z, Zhao Z Y, et al. Acta Metallurgica Sinica (English Letters), 2023, 36(6), 917.
26 Li H L, Yang Z H, Cai D L, et al. Materials and Design, 2020, 185, 108245.
27 Huo P C, Zhao Z Y, Du W B, et al. Ceramics International, 2021, 47(14), 19546.
[1] 杜刚, 李亮, 王子晨, 吴俊, 杜修力. 碳纤维混凝土高温冷却后动态压缩性能试验研究[J]. 材料导报, 2025, 39(6): 24010268-6.
[2] 王真帅, 李继文, 张欣, 李顺杰, 刘伟, 徐流杰. 激光选区熔化制备M50NiL轴承钢回收粉末特性的变化[J]. 材料导报, 2025, 39(22): 24050187-7.
[3] 倪小南, 王安森, 胡子健, 杨温鑫, 罗永康, 胡振杰, 邓欣. TiCN/AlSi10Mg复合材料激光选区熔化过程多物理场建模及数值模拟[J]. 材料导报, 2025, 39(15): 24070044-7.
[4] 韩炬, 王博超, 董东东, 马汝成, 龙海洋, 李晓硕, 王涛, 闫星辰. 激光选区熔化Inconel 625合金在酸性环境中的腐蚀机理研究[J]. 材料导报, 2025, 39(10): 24080164-6.
[5] 郭耀旗, 唐敏, 马红林, 魏文猴, 王林志, 范树迁, 张祺. 预热温度对激光选区熔化成形30%SiCp/AlSi10Mg复合材料力学性能的影响[J]. 材料导报, 2024, 38(3): 22090016-7.
[6] 陶宏伟, 禹庭, 曹明轩, 吴仲恒, 蔡召兵, 刘敏, 闫星辰. 激光选区熔化CoCrMo合金的组织研究及生物应用[J]. 材料导报, 2024, 38(17): 23030026-6.
[7] 冯虎, 闵智爽, 郭奥飞, 朱必洋, 陈兵, 黄昊. 超高韧性磷酸镁水泥基复合材料压缩力学性能研究[J]. 材料导报, 2024, 38(17): 23090058-12.
[8] 平凡, 赵宝艳, 包锦标, 张利. EPDM对VMQ硅橡胶泡沫发泡行为及力学性能的影响[J]. 材料导报, 2023, 37(6): 21080090-5.
[9] 李舒玥, 傅广, 李泓历, 彭庆国, 肖华强, 张钧星, 张泽华. 激光选区熔化增材制造吸收率的研究进展[J]. 材料导报, 2023, 37(24): 22040104-10.
[10] 王利卿, 凌子涵, 赵占勇, 张震, 白培康. 增材制造Ti-6Al-4V合金晶粒形貌调控研究进展[J]. 材料导报, 2023, 37(22): 22030266-7.
[11] 潘旺, 夏洋洋, 张超, 方宏远, 王复明. 新型聚氨酯弹性体注浆材料的压缩尺寸效应及应变率效应[J]. 材料导报, 2023, 37(15): 22020115-7.
[12] 赵金猛, 卢林, 王静荣, 张亮, 吴文恒, 朱冬, 郭帅东, 肖从越. 激光选区熔化Ti6Al4V在介观尺度下的热力学行为与缺陷:数值模拟与实验验证[J]. 材料导报, 2021, 35(z2): 410-416.
[13] 朱冬, 张亮, 吴文恒, 卢林, 倪晓晴, 宋佳, 赵金猛, 朱文华, 顾孙望, 单小龙. 钛基复合材料激光选区熔化增材制造成形技术研究进展[J]. 材料导报, 2021, 35(Z1): 347-351.
[14] 温俊霞, 余磊, 曹睿, 车洪艳, 王铁军, 董浩, 闫英杰. 回火处理对一种新型钴基合金表面结构和压缩力学性能的影响[J]. 材料导报, 2021, 35(Z1): 381-385.
[15] 徐仰涛, 马腾飞, 王永红. 钽元素对Co-8.8Al-9.8W合金微观组织和力学性能的影响规律[J]. 材料导报, 2021, 35(22): 22104-22108.
[1] REN Weixin, CAO Shengfei, DAI Wenjie, XIE Jingli, ZHANG Qi. Progress in Research on Shear Characteristics of Buffer Materials for High-level Radioactive Waste Repositories[J]. Materials Reports, 2025, 39(23): 25010172 -11 .
[2] JIANG Yue, XIAO Mingjun. Research Progress of High-entropy Oxides in Electrode Materials for Sodium-ion Batteries[J]. Materials Reports, 2025, 39(24): 25010122 -9 .
[3] MA Shuo, JIANG Yi, GAO Xiaojian. The Influence Law and Mechanism of C-S-H Seed on the Strength of Steam Curing Cement-based Materials[J]. Materials Reports, 2025, 39(24): 24120059 -7 .
[4] HU Jianlin, ZHAO Yuxuan, ZHOU Yongxiang, LENG Faguang, DU Xiuli. Dynamic Properties of Geopolymer-Cemented Soils and Fitting Analysis of Their Dynamic Constitutive Model[J]. Materials Reports, 2025, 39(24): 25010113 -9 .
[5] . [J]. Materials Reports, 2026, 40(1): 0 .
[6] ZHANG Minxia. Experimental Study on Influencing Factors and Mechanism of Microbial Soil Improvement Effect[J]. Materials Reports, 2026, 40(1): 24120104 -8 .
[7] . [J]. Materials Reports, 2026, 40(2): 0 .
[8] QU Shaopeng, ZHANG Haiqiang, YANG Lujia, LI Xin, HE Dongyu. Research Status and Development Trends of Transport Materials for Offshore Wind to Hydrogen[J]. Materials Reports, 2026, 40(2): 25020154 -11 .
[9] YU Hao, DENG Wenjun, WANG Yongfei, LUO Dawei. Research Progress of Electrolyte for Anode-free Lithium Metal Batteries[J]. Materials Reports, 2026, 40(2): 24110166 -8 .
[10] ZHANG Ping, LU Mingtai, LU Tiantian, YUE Yinghu. Analysis of DC Aging Characteristics of Stable ZnO Varistors Based on Voronoi Network and Finite Element Simulation Model[J]. Materials Reports, 2026, 40(2): 24090232 -9 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed