Please wait a minute...
材料导报  2026, Vol. 40 Issue (2): 25010023-6    https://doi.org/10.11896/cldb.25010023
  无机非金属及其复合材料 |
块体二氧化硅气凝胶的常压制备及性能研究
彭慧慧, 秦灵, 白超云, 匡亮, 谢丹, 聂朝胤*
西南大学材料与能源学院,重庆 400715
Study on the Preparation and Performance of Bulk Silica Aerogel at Atmospheric Pressure
PENG Huihui, QIN Ling, BAI Chaoyun, KUANG Liang, XIE Dan, NIE Chaoyin*
School of Materials and Energy, Southwest University, Chongqing 400715, China
下载:  全 文 ( PDF ) ( 18969KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 二氧化硅气凝胶的网络骨架多呈珍珠链状弱连接,交联程度低,导致其脆性、力学性能和成型性差。本工作采用环氧丙烷和明胶双重交联的方式,对二氧化硅气凝胶骨架进行强化,并对孔隙结构进行调控,在常压干燥条件下制得具有良好成形性和隔热性能的块体二氧化硅气凝胶。本工作重点研究了环氧丙烷与明胶对骨架增强的机理及明胶含量对气凝胶孔隙结构、大小等的影响规律。实验结果表明:环氧丙烷和明胶的协同作用使气凝胶形成更加立体的三维网络骨架,并促使二次粒子间由点接触的弱颈连接转变为细小粒子紧密堆叠的均匀结构,骨架连接强度显著增强。适量明胶的添加还可以抑制环氧丙烷开环后的自聚合,使气凝胶的孔隙更加均匀细小。所获得的气凝胶展现出优异的力学性能和隔热性能,压缩应力从2 080.31 kPa提升至2 760.61 kPa,导热系数从0.084 50 W·m-1·K-1下降至0.038 63 W·m-1·K-1
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
彭慧慧
秦灵
白超云
匡亮
谢丹
聂朝胤
关键词:  块体气凝胶  环氧丙烷  明胶  常压干燥  隔热性能    
Abstract: The network skeletons of silica aerogels are primarily characterized by weak connections arranged in a pearl chain-like manner, exhibiting a low degree of cross-linking. This structural configuration contributes to their brittleness, poor mechanical properties and formability. In this study, we adopt a double cross-linking method using propylene oxide and gelatin to enhance the silica aerogel skeletons and regulate pore structures. A bulk silica aerogel with improved formability and thermal insulation properties was prepared under ambient pressure drying conditions. The work emphasizes the strengthening mechanism of the skeletons by propylene oxide and gelatin as well as the influence of gelatin content on the pore structures, sizes, etc. of the aerogels. Experimental results indicate that the synergistic effect of propylene oxide and gelatin fosters the formation of a more three-dimensional network skeleton, promoting the transformation of the weak neck connections between secondary particles into a uniform structure of closely stacked fine particles. Consequently, the connection strength of the skeleton is significantly enhanced. Furthermore, the addition of an appropriate amount of gelatin can inhibit the self-polymerization of propylene oxide after ring opening, resulting in more uniform and finer pores within the aerogel. The resulting aerogel demonstrates excellent mechanical and thermal insulation properties, with compressive stress increasing from 2 080.31 kPa to 2, 760.61 kPa, while thermal conductivity decreases from 0.084 50 W·m-1·K-1 to 0.038 63 W·m-1·K-1.
Key words:  monolithic aerogel    epoxypropane    gelatin    ambient pressure drying    heat-insulating property
出版日期:  2026-01-25      发布日期:  2026-01-27
ZTFLH:  TQ427.2  
通讯作者:  *聂朝胤,西南大学材料与能源学院教授、博士研究生导师。目前主要从事PVD、CVD、电沉积涂层材料和功能气凝胶及其纳米复合材料方面的研究。niecy@swu.edu.cn   
作者简介:  彭慧慧,现为西南大学材料与能源学院硕士研究生,在聂朝胤教授的指导下进行研究。目前主要研究领域为纳米功能材料。
引用本文:    
彭慧慧, 秦灵, 白超云, 匡亮, 谢丹, 聂朝胤. 块体二氧化硅气凝胶的常压制备及性能研究[J]. 材料导报, 2026, 40(2): 25010023-6.
PENG Huihui, QIN Ling, BAI Chaoyun, KUANG Liang, XIE Dan, NIE Chaoyin. Study on the Preparation and Performance of Bulk Silica Aerogel at Atmospheric Pressure. Materials Reports, 2026, 40(2): 25010023-6.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.25010023  或          https://www.mater-rep.com/CN/Y2026/V40/I2/25010023
1 Cheng E J, Sakamoto J, Salvador J, et al. Acta Materialia, 2017, 127, 450.
2 Lee K J, Choe Y J, Kim Y H, et al. Ceramics International, 2018, 44(2), 2204.
3 Hung W C, Horng R S, Shia R E. Journal of Sol-Gel Science and Technology, 2021, 97(2), 414.
4 Talebi Z, Soltani P, Habibi N, et al. Construction and Building Materials, 2019, 220, 76.
5 Chen Y X, Sepahvand S, Gauvin F, et al. Construction and Building Materials, 2021, 293, 123289.
6 Chen Y X, Hendrix Y, Schollbach K, et al. Construction and Building Materials, 2020, 248, 118709.
7 Shin D, Kim J, Kim C, et al. Nature Communications, 2017, 8(1), 16090.
8 Yu Z L, Yang N, Apostolopoulou-Kalkavoura V, et al. Angewandte Chemie International Edition, 2018, 57(17), 4538.
9 Cabrera S, El Haskouri J, Alamo J, et al. Advanced Materials, 1999, 11(5), 379.
10 Yuan B, Ding S Q, Wang D D, et al. Materials Letters, 2012, 75, 204.
11 Zhang H X, He X D, F. Journal of Alloys and Compounds, 2009, 472(1-2), 194.
12 Lee D, Stevens P C, Zeng S Q, et al. Journal of Non-Crystalline Solids, 1995, 186, 285.
13 Fu Y, Wang Y and Cai M. Cailiao Gongcheng-Journal of Materials Engineering, 2023, 51(11), 1.
14 Wang L K, Feng J Z, Jiang Y G, et al. Materials Letters, 2019, 913, 256.
15 Zhang Y, Shen Q Q, Li X S, et al. RSC Advance, 2020, 10(69), 42297.
16 Zhang R, Hang N, Duan X J, et al. New Carbon Materials, 2017, 32(3), 258.
17 Li X L, Jiao Y N, Ji H M, et al. Integrated Ferroelectrics, 2013, 146(1), 122.
18 Liu F, Feng D Y, Yang H, et al. Scientific Reports, 2020, 10(1), 1.
19 Cuce E, Cuce P M, Wood C J, et al. Renewable and Sustainable Energy Reviews, 2014, 34, 273.
20 Huang X, Zhao T T, Xiao M, et al. Chinese Science Bulletin, 2024, 69(20), 2923.
21 Arias J J R, Zhang Z J, Takahashi M, et al. Polymer Journal, 2024, 69(13), 2923.
22 Herman P, Fábián I, Kalmár J. ACS Applied Nano Materials, 2020, 3(1), 195.
23 Bayram C, Ozturk S, Karaosmanoglu B, et al. Macromolecular Bios-cience, 2024, 24(12), 1.
24 Sun J, Hu J, Zhong Y, et al. Cellulose, 2024, 31(15), 9303.
[1] 邵杰, 陈筝, 刘舒介, 罗淑见. 水热处理废弃咖啡渣对混凝土性能的影响及其机理研究[J]. 材料导报, 2025, 39(24): 24110107-7.
[2] 王瑞瑞. 明胶基智能材料的开发研究进展[J]. 材料导报, 2025, 39(18): 24060177-8.
[3] 崔楷敏, 李端, 李学超, 刘荣军, 王衍飞. 耐高温Al-Si-O结构功能一体化材料研究进展[J]. 材料导报, 2025, 39(14): 24070084-10.
[4] 刘世盟, 郭乃胜, 崔世超, 褚召阳, 赵近川. PDA/GO/PUF聚氨酯泡沫的力学与隔热性能及其微观机理[J]. 材料导报, 2024, 38(22): 23110080-9.
[5] 邢悦, 井致远, 陈永雄, 任素娥, 梁秀兵. 航空航天用气凝胶材料的研究进展[J]. 材料导报, 2022, 36(22): 22010024-15.
[6] 董桂伟, 赵国群, 丁汪洋, 王桂龙, 张磊. 基于多阶压力控制的双峰泡孔聚合物发泡行为及性能[J]. 材料导报, 2022, 36(2): 20050168-5.
[7] 李曼, 武丁胜, 魏安方, 刘锁, 赵玲玲, 王衡, 王克付, 凤权. 静电纺丝聚己内酯/明胶载姜黄素生物活性敷料的制备和性能[J]. 材料导报, 2022, 36(11): 21010039-7.
[8] 李鸣明, 詹世平, 宫蕾. 壳聚糖/明胶复合微球的制备及对铬离子的吸附性能[J]. 材料导报, 2020, 34(Z1): 535-538.
[9] 郭建业, 赵英民, 吴朝军, 李文静, 杨洁颖, 张丽娟, 苏力军. 温度对石英纤维毡隔热性能的影响[J]. 材料导报, 2020, 34(24): 24019-24022.
[10] 张倩, 郑振荣, 赵晓明, 毛科铸, 罗丽娟. 高温下涂层织物传热过程的数值模拟[J]. 材料导报, 2020, 34(16): 16167-16171.
[11] 闫秋会, 夏卫东, 罗杰任, 霍鑫. SiO2气凝胶的常压干燥制备与性能表征[J]. 材料导报, 2020, 34(12): 12173-12177.
[12] 张 震,冯军宗,姜勇刚,刘 平,张秋华,卫荣辉,陈 翔,冯 坚. 利用离子液体制备无机气凝胶的研究进展[J]. 《材料导报》期刊社, 2018, 32(9): 1469-1476.
[13] 罗燚, 姜勇刚, 冯军宗, 关蕴奇, 冯坚. 常压干燥制备SiO2气凝胶复合材料研究进展[J]. 《材料导报》期刊社, 2018, 32(5): 780-787.
[14] 秦晓素,黄洁,雷云,杨泽斌,陈庆华,颜廷亭. 明胶/掺锶β-磷酸三钙/硫酸钙复合多孔支架的制备与性能[J]. 《材料导报》期刊社, 2018, 32(12): 1967-1972.
[15] 黄大建, 马宗红, 马晨阳, 王新伟. 甲壳素纳米纤维增强明胶/壳聚糖复合膜的制备及性能研究*[J]. 《材料导报》期刊社, 2017, 31(8): 21-24.
[1] GUI Yan, ZHAO Shuang, YANG Zichun. Research Progress of 3D Printing Thermal Insulation Materials[J]. Materials Reports, 2024, 38(8): 22090104 -11 .
[2] REN Weixin, CAO Shengfei, DAI Wenjie, XIE Jingli, ZHANG Qi. Progress in Research on Shear Characteristics of Buffer Materials for High-level Radioactive Waste Repositories[J]. Materials Reports, 2025, 39(23): 25010172 -11 .
[3] JIANG Yue, XIAO Mingjun. Research Progress of High-entropy Oxides in Electrode Materials for Sodium-ion Batteries[J]. Materials Reports, 2025, 39(24): 25010122 -9 .
[4] MA Shuo, JIANG Yi, GAO Xiaojian. The Influence Law and Mechanism of C-S-H Seed on the Strength of Steam Curing Cement-based Materials[J]. Materials Reports, 2025, 39(24): 24120059 -7 .
[5] HU Jianlin, ZHAO Yuxuan, ZHOU Yongxiang, LENG Faguang, DU Xiuli. Dynamic Properties of Geopolymer-Cemented Soils and Fitting Analysis of Their Dynamic Constitutive Model[J]. Materials Reports, 2025, 39(24): 25010113 -9 .
[6] . [J]. Materials Reports, 2026, 40(1): 0 .
[7] ZHANG Minxia. Experimental Study on Influencing Factors and Mechanism of Microbial Soil Improvement Effect[J]. Materials Reports, 2026, 40(1): 24120104 -8 .
[8] . [J]. Materials Reports, 2026, 40(2): 0 .
[9] QU Shaopeng, ZHANG Haiqiang, YANG Lujia, LI Xin, HE Dongyu. Research Status and Development Trends of Transport Materials for Offshore Wind to Hydrogen[J]. Materials Reports, 2026, 40(2): 25020154 -11 .
[10] YU Hao, DENG Wenjun, WANG Yongfei, LUO Dawei. Research Progress of Electrolyte for Anode-free Lithium Metal Batteries[J]. Materials Reports, 2026, 40(2): 24110166 -8 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed