Please wait a minute...
材料导报  2026, Vol. 40 Issue (1): 24030044-6    https://doi.org/10.11896/cldb.24030044
  无机非金属及其复合材料 |
沥青混合料受压结构力链组成特征分析
王伟1, 刘博2, 宋戈2, 徐永江1, 谭忆秋1,3,*
1 哈尔滨工业大学交通科学与工程学院,哈尔滨 150090
2 黑龙江省交通投资集团有限公司,哈尔滨 150028
3 哈尔滨工业大学城市水资源与水环境国家重点实验室,哈尔滨 150090
Characteristics of Force Chain Composition in Asphalt Mixture Under Compression
WANG Wei1, LIU Bo2, SONG Ge2, XU Yongjiang1, TAN Yiqiu1,3,*
1 School of Transportation Science and Engineering, Harbin Institute of Technology, Harbin 150090, China
2 Heilongjiang Transportation Investment Group Co., Ltd., Harbin 150028, China
3 State Key Laboratory of Urban Water Resources and Water Environment, Harbin Institute of Technology, Harbin 150090, China
下载:  全 文 ( PDF ) ( 24593KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为量化评价沥青混合料受压时内部组分贡献,基于离散元方法提出三维模型高精度构建方式,实现了常温下单轴压缩,力链强度分布可视化,并提出强弱力链概念表征受力特征,同时采用统计学方法进行力链分析。结果表明:单轴压缩下,SMA13受压时内部接触力61.9%由骨料提供,AC13仅为24.9%,骨料嵌挤仅在受压生效,沥青砂浆可以抵抗压力和拉力。沥青砂浆比重影响应力分布,强力链占比为35%~45%,分布均匀;力链强度随着角度趋于水平方向逐渐降低,界面力链强度变化幅度小;可结合各组分受力特征进行设计。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王伟
刘博
宋戈
徐永江
谭忆秋
关键词:  沥青混合料  离散元  单轴压缩  接触力链    
Abstract: To quantitatively evaluate the contribution of components in asphalt mixture under compression, a high-precision 3D model construction met-hod was proposed based on the discrete element method. Uniaxial compression simulation at room-temperature was achieved, visualizing the strength distribution of force chains. The concept of strong-weak force chains was proposed to characterize the force characteristics, and using statistical methods for force chain analysis. The results show that under uniaxial compression mode, the internal contact force of SMA13 is 61.9% provided by aggregates, while AC13 is only 24.9%. Aggregates only take effect under compression, and asphalt mortar can resist compression and tension. The proportion of asphalt mortar affects the stress distribution, with a strength chain accounting for 35%—45% and evenly distributed. The strength of the force chain gradually decreases as the angle approaches the horizontal direction, and the amplitude of change in the strength of the interface force chain is small. Asphalt mixture design should be based on the mechanical characteristics of each component.
Key words:  asphalt mixture    discrete element method    uniaxial compression    force chains
出版日期:  2026-01-10      发布日期:  2026-01-09
ZTFLH:  U414  
基金资助: 国家自然科学基金区域创新发展联合基金(U20A20315)
通讯作者:  * 谭忆秋,博士,哈尔滨工业大学交通科学与工程学院教授、博士研究生导师,长期从事寒区沥青道路耐久性与安全的研究。tanyiqiu@hit.edu.cn   
作者简介:  王伟,哈尔滨工业大学交通科学与工程学院博士研究生,在谭忆秋教授的指导下进行研究。目前主要研究领域为沥青混合料含缺陷黏弹开裂。
引用本文:    
王伟, 刘博, 宋戈, 徐永江, 谭忆秋. 沥青混合料受压结构力链组成特征分析[J]. 材料导报, 2026, 40(1): 24030044-6.
WANG Wei. Characteristics of Force Chain Composition in Asphalt Mixture Under Compression. Materials Reports, 2026, 40(1): 24030044-6.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24030044  或          https://www.mater-rep.com/CN/Y2026/V40/I1/24030044
1 Ding X H, Ma T, Zhang W G, et al. Construction and Building Materials, 2018, 171, 205.
2 Wei H, Li J, Wang F Y, et al. International Journal of Pavement Engineering, 2021, 23(10), 3481.
3 Cui Y N, Zhang Q, Zhang X. Journal of Building Materials, 2023, 26(1), 85(in Chinese).
崔亚楠, 张强, 张翔. 建筑材料学报, 2023, 26(1), 85.
4 Gong F Y, Deng R, Wang Q H, et al. Construction and Building Materials, 2023, 385, 131522
5 Zhang H T, Liu H L, You W Q. Materials and Structures, 2022, 55(1), 18.
6 Zhao G F, Wang Q Z, Yan Z Y. Journal of Materials in Civil Engineering, 2021, 33(8), 04021179.
7 Ma T, Zhang D Y, Zhang Y, et al. Road Materials and Pavement Design, 2018, 19(2), 367.
8 Liu Y, You Z P. Journal of Computing in Civil Engineering, 2009, 23(6), 340.
9 Zhang D Y, Huang X M, Zhao Y. Journal of Computing in Civil Engineering, 2013, 27(2), 111.
10 Ding X H, Ma T, Gao W. Construction and Building Materials, 2017, 154, 1048.
11 Mahmoud E, Masad E, Nazarian S. Journal of Materials in Civil Engineering, 2015, 22(1), 10.
12 Peng Y, Wan L, Sun L J. International Journal of Pavement Engineering, 2019, 20(6), 724.
13 Xue B, Pei J Z, Zhou B C, et al. Construction and Building Materials, 2020, 236, 117580.
14 Wang S D, Miao Y H, Wang L B. Construction and Building Materials, 2020, 258, 119674.
15 Chang M F, Liu Z L, Zhang J P, et al. China Journal of Highway and Transport, 2022, 35(9), 224(in Chinese).
常明丰, 刘志玲, 张久鹏, 等. 中国公路学报, 2022, 35(9), 224.
16 Zhu X, Yu H N, Qian G P, et al. Case Studies in Construction Materials, 2022, 18, e01773.
17 Du J H, Ren D Y, Ai C F, et al. Journal of Building Materials, 2022, 25(3), 300(in Chinese).
杜健欢, 任东亚, 艾长发, 等. 建筑材料学报, 2022, 25(3), 300.
18 Chen J, Zhang D, Huang X M. Application of discrete element particle flow software (PFC) in road engineering, China Communications Press, China, 2015, pp. 114(in Chinese).
陈俊, 张东, 黄晓明. 离散元颗粒流软件(PFC)在道路工程中的应用, 人民交通出版社. 2015, pp. 114.
19 Xie D Y, Lin B H, Shao S J. Geotechnical engineering, Higher Education Press, China, pp. 7(in Chinese).
谢定义, 林本海, 邵生俊. 岩土工程学, 高等教育出版社, 2008, pp.7.
20 Lu J Z. Study on numerical simulation of asphalt mixture based on CT technology and three-dimensional discrete element method. Master's Thesis, South China University of Technology, China, 2020 (in Chinese).
卢家志. 基于CT技术和三维离散元法的沥青混合料数值模拟研究. 硕士学位论文, 华南理工大学, 2020.
21 Tu Z X. Study on numerical simulation of asphalt mixture based on X-ray CT and discrete element method. Master's Thesis, South China University of Technology, China, 2019 (in Chinese).
涂志先. 基于X-ray CT与离散元法的沥青混合料数值模拟研究. 硕士学位论文, 华南理工大学, 2019.
[1] 朱作祥, 骆祚森, 李建林, 邓华锋, 王乐华. 含水状态对硅质胶结砂岩抗拉特性的影响及颗粒流模拟[J]. 材料导报, 2025, 39(9): 24010198-9.
[2] 邹桂莲, 焦有晴, 张园, 虞将苗, 韩骜. 基于激光共聚焦扫描显微镜的新旧沥青融合及均质化程度研究[J]. 材料导报, 2025, 39(5): 24010257-6.
[3] 刘朝晖, 盛佳豪, 柳力. 数据驱动下的沥青混合料材料组成设计方法[J]. 材料导报, 2025, 39(4): 24010230-9.
[4] 吴剑锋, 黄雨悦, 李赫赫, 马德源, 王彩华. 混凝土单轴压缩表面裂纹分布的一致分形特征[J]. 材料导报, 2025, 39(4): 23030047-7.
[5] 薛刚, 刘毅, 牟一飞. 基于3D细观模型的混凝土单轴拉压应力应变关系影响因素研究[J]. 材料导报, 2025, 39(15): 24060161-8.
[6] 延西利, 郑涛, 蒋双全, 李卫成. 沥青温拌技术分类及温拌效果的试验评价方法[J]. 材料导报, 2024, 38(4): 22080003-8.
[7] 李超, 周梅, 李杨, 张凯, 郭凌志. 固废粗集料平均弹性模量与混凝土弹性模量的相关性[J]. 材料导报, 2024, 38(4): 22050271-8.
[8] 汤文, 旷强, 张宇翔, 吕悦晶. 植物油微胶囊沥青混合料的微观力学性能及自愈合机制[J]. 材料导报, 2024, 38(4): 22090060-7.
[9] 周铭钰, 刘曙光, 吴超凡, 刘军, 张恒龙, 张帅, 李启石. 基于水性环氧乳化沥青的超薄磨耗层级配设计及性能对比研究[J]. 材料导报, 2024, 38(24): 23110085-8.
[10] 牛冬瑜, 黄山, 师伟博, 谢希望, 汪严, 高仰明. 粗集料接触配位参数影响下沥青混合料的抗断裂特性研究[J]. 材料导报, 2024, 38(23): 23050048-10.
[11] 季节, 张梓源, 文龙, 尤鹏超, 马童, 黄昶惟. 粉胶比对煤直接液化残渣复合改性沥青胶浆及混合料低温性能的影响[J]. 材料导报, 2024, 38(22): 23090053-7.
[12] 唐杰, 赵华, 高红成. 碳化硅粉填充沥青混合料微波自愈合性能及合理掺量[J]. 材料导报, 2024, 38(20): 23080070-10.
[13] 高颖, 陈萌, 王长龙. 改性钢渣-沥青混合料的性能及机理[J]. 材料导报, 2024, 38(2): 22100041-7.
[14] 王志臣, 孙雅珍, 郭乃胜. 基于连续时间谱的沥青混合料黏弹性参数换算[J]. 材料导报, 2024, 38(18): 22120218-6.
[15] 李凯, 杨璐璐, 史才军. 基于不规则骨料堆积结构的混凝土水渗透性的研究[J]. 材料导报, 2024, 38(12): 23010131-8.
[1] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[2] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[3] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
[4] SHANG Genfeng, HUANG Jiapeng, WANG Hang. Study on Cyclic Oxidation Behavior of Y and La Modified Ni-10Cr-5Al Alloys[J]. Materials Reports, 2018, 32(4): 584 -588 .
[5] LI Yanli, XU Zhuang, LI Hui, KONG Xiangdong, HAN Li, ZHANG Xuena. Preparation of ZnO Thin Films by Electron Beam Annealing Method[J]. Materials Reports, 2017, 31(2): 41 -45 .
[6] GUO Hongjian, JIA Junhong, ZHANG Zhenyu, LIANG Bunu, CHEN Wenyuan, LI Bo, WANG Jianyi. Microstructure and Tribological Properties of VN/Ag Films Fabricated by Pulsed Laser Deposition Technique[J]. Materials Reports, 2017, 31(2): 55 -59 .
[7] CHEN Yajun, YU Jiaqi, ZHAO Jieyu, WANG Fusheng. Research and Development of High Temperature Solid Self-lubricanting Coating Prepared by Magnetron Sputtering[J]. Materials Reports, 2017, 31(3): 32 -37 .
[8] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[9] XIE Fei, WANG Dan, WU Ming, ZONG Yue, YUAN Shijiao, SHEN Hongjuan, LI Rui. Effect of Sulfate Reducing Bacteria in Seawater on Corrosion Behavior of Q235 Steel[J]. Materials Reports, 2017, 31(8): 51 -55 .
[10] TAN Cao, DUAN Hongjuan, WANG Junkai, ZHANG Haijun, LIU Jianghao. Preparation of ZrB2 Ultrafine Powders via Molten-salt-mediated Magnesiothermic Reduction[J]. Materials Reports, 2017, 31(8): 109 -112 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed