Please wait a minute...
材料导报  2025, Vol. 39 Issue (9): 24010247-6    https://doi.org/10.11896/cldb.24010247
  金属与金属基复合材料 |
Mo2BC增强Al基复合材料摩擦学性能研究
祝林1,2, 王帅1,*, 游龙2, 刘娟1,2, 逄显娟1, 陆焕焕1, 宋晨飞1, 张永振1
1 河南科技大学高端轴承摩擦学技术与应用国家地方联合工程实验室,河南 洛阳 471023
2 河南科技大学材料科学与工程学院,河南 洛阳 471023
Study on the Tribological Properties of Mo2BC Reinforced Al Matrix Composite Materials
ZHU Lin1,2, WANG Shuai1,*, YOU Long2, LIU Juan1,2, PANG Xianjuan1, LU Huanhuan1, SONG Chenfei1, ZHANG Yongzhen1
1 National United Engineering Laboratory for Bearing Tribology, Henan University of Science and Technology, Luoyang 471023, Henan, China
2 School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471023, Henan, China
下载:  全 文 ( PDF ) ( 37985KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用真空热压烧结制备了不同Mo2BC含量的Al基复合材料,并进一步分析了Mo2BC含量对Al基复合材料摩擦学性能的影响。研究表明:随着Al基体中Mo2BC陶瓷颗粒含量的增加,材料体系的硬度得到了明显的提升,这是因为高硬度的Mo2BC陶瓷颗粒在复合材料中能够表现出显著的钉扎效应,使得基体在受力过程中产生的塑性变形能够得到抑制。当Mo2BC陶瓷颗粒的质量分数提高到30%时,复合材料的硬度较纯Al提升了约130%,其硬度值高达72.5HV0.2。此外,随着Mo2BC陶瓷颗粒含量的增加,复合材料的摩擦磨损性能得到了明显的改善。对于纯Al和添加Mo2BC质量分数为10%的Al基复合材料,当其与GCr15轴承钢进行配副时,磨损机制主要表现为二体磨粒磨损和黏着磨损,此时材料基体具有较高的磨损率(1.43×10-4 mm3·N-1·m-1)和摩擦系数(0.84)。随着添加的Mo2BC陶瓷颗粒质量分数逐渐增加至30%,复合材料的磨损率降低至2.35×10-3 mm3·N-1·m-1,摩擦系数降至0.56,表现出一定的减摩润滑特性。这是由于Mo2BC的添加能够使材料体系摩擦表面通过摩擦氧化作用生成具有润滑性能的摩擦氧化物层,有效抑制了二体磨粒磨损和黏着磨损,起到了一定的抗磨减摩效应。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
祝林
王帅
游龙
刘娟
逄显娟
陆焕焕
宋晨飞
张永振
关键词:  铝基复合材料  粉末冶金  摩擦学行为  磨损机制    
Abstract: Aluminum matrix composites reinforced with different content of Mo2BC ceramic were prepared using vacuum hot pressing sintering method, and analysis was conducted on the influence of Mo2BC content on the tribological properties of aluminum matrix composites. It is confirmed that with the increment of the Mo2BC content, the hardness of the composite is significantly improved. This can be ascribed to the significant pinning effect of Mo2BC ceramic particles in the composite materials matrix, which can inhibit the plastic deformation of the matrix during the sliding process. When the mass fraction of Mo2BC ceramic particles increases up to 30%, the hardness of the composite increases by 130% compared with plain Al, where the hardness is as high as 72.5HV0.2. In addition, with the increasing content of Mo2BC ceramic particles, the friction and wear properties of the composites have been significantly improved. For plain Al and Al matrix composites containing 10% Mo2BC, when coupled with GCr15 bearing steel, the two materials exhibit high friction coefficient (0.84) and wear rate (14.3×10-3 mm3·N-1·m-1). As the Mo2BC ceramic particles gradually increase up to 30%, the material can exhibit lubrication effect, in which the wear rate and friction coefficient of the composite come down to 2.35×10-3 mm3·N-1·m-1and 0.56, respectively. This is because the addition of Mo2BC ceramic particles can generate lubricating tribo-oxides on the wear surface of the Al matrix composite due to the tribo-oxidation reaction, which can effectively inhibit the two body abrasive and adhesive wear, and it has a certain anti-wear and anti-friction effect.
Key words:  Al matrix composites    powder metallurgy    tribological behavior    wear mechanism
出版日期:  2025-05-10      发布日期:  2025-04-28
ZTFLH:  TH117.1  
基金资助: 国家自然科学基金(92266205);河南省自然科学基金(242300421182); 河南省科技攻关项目(252102231034)
通讯作者:  *王帅,博士,河南科技大学高端轴承摩擦学技术与应用国家地方联合工程实验室副教授、硕士研究生导师。目前从事苛刻工况高性能自润滑复合材料方面的研究工作。swang@haust.edu.cn   
作者简介:  祝林,硕士,研究方向为铝合金自润滑复合材料的制备及摩擦学性能研究。
引用本文:    
祝林, 王帅, 游龙, 刘娟, 逄显娟, 陆焕焕, 宋晨飞, 张永振. Mo2BC增强Al基复合材料摩擦学性能研究[J]. 材料导报, 2025, 39(9): 24010247-6.
ZHU Lin, WANG Shuai, YOU Long, LIU Juan, PANG Xianjuan, LU Huanhuan, SONG Chenfei, ZHANG Yongzhen. Study on the Tribological Properties of Mo2BC Reinforced Al Matrix Composite Materials. Materials Reports, 2025, 39(9): 24010247-6.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24010247  或          https://www.mater-rep.com/CN/Y2025/V39/I9/24010247
1 Lyu L, Zhu H. Materials for Mechanical Engineering, 2007, 31(10), 64(in Chinese)
吕亮, 朱华. 机械工程材料, 2007(10), 64.
2 Sonawane P M, Karnik M G. Materials Today: Proceedings, 2017, 4(2), 3290.
3 Sharma A K, Bhandari R, Aherwar A, et al. Materials Today: Procee-dings, 2020, 26(2), 2419.
4 Veeresh K G B, Pramod R, Gude V C, et al. Advances in Materials and Processing Technologies, 2022, 8(2), 802.
5 Alharthi N H, Almotairy S M, Almutairi A M. Metals, 2022, 12(2), 323
6 Kumaresan G, Kumar B A. International Journal of Metalcasting, 2022, 17(2), 1
7 Guo M L T, Tsao C Y A. Materials Science and Engineering: A, 2002, 333(2), 134.
8 Guo M L T, Tsao C Y A. Composites Science and Technology, 2000, 60(1), 65.
9 Wang Y, Rainforth W M, Jones H, et al. In: 8th International Confe-rence on Aluminium Alloys 2002: Their Physical and Mechanical Properties Pt. 3 ICAA8. Cambridge, UK, 2022, pp, 1473.
10 Bolvardi H, Music D, Schneider J M. Thin Solid Films, 2015, 589(31), 707.
11 Zhang Z, Chang B, Yu Z, et al. Tribology International, 2021, 163(3), 107174.
12 Csanádi T, Vojtko M, Sedlák R, et al. Journal of the European Ceramic Society, 2020, 40(7), 2674.
13 Dai J, Singh J, Yamamoto N. Journal of the European Ceramic Society, 2020, 40(15), 5272.
14 Wang S, Pang X, Zhang Z, et al. Journal of the European Ceramic Society, 2021, 41(10), 5109.
15 Chang B L, Yu Z G, Wang R J, et al. Tribology, 2022, 42(6), 1116 (in Chinese).
常宝林, 于增光, 王睿杰, 等. 摩擦学学报, 2022, 42(6), 1116.
16 Shang Y, Zhang W, Song H, et al. Heliyon, 2023, 9(8), 18607.
17 Li H. Preparation of hybrid reinforced aluminum matrix composite materials by powder metallurgy method and study on its microstructure and properties. Master’s Thesis, Hunan University, China, 2015 (in Chinese).
李华培. 粉末冶金法制备混杂增强铝基复合材料及其组织性能研究. 硕士学位论文, 湖南大学, 2015.
18 Vvb P, Bvr B, Yr M, et al. Materials Science and Engineering, 2002, 337(1-2), 179.
19 Stone I C, Tsakiropoulos P. In: Ninth International Conference on Composite Materials (ICCM/9). Madrid, Spain, 1993, pp, 271.
20 Zhu S, Tang Z H, Wang L, et al. Lubrication Engineering, 2014, 39(2), 94 (in Chinese).
朱松, 汤中华, 王磊, 等. 润滑与密封, 2014, 39(2), 94.
21 Ye Z, He G Q, Dai L Q, et al. Materials Reports, 2017, 31(2), 60(in Chinese).
叶赟, 何国球, 戴礼权, 等. 材料导报, 2017, 31(2), 60.
22 Rouhi M, Moazami-Goudarzi M, Ardestani M. Transactions of Nonferrous Metals Society of China, 2019, 29(6), 1169.
23 Subramanian S, Vijayan, J. & Muthaiah, V. Journal of the Institution of Engineers (India): Series C, 2017, 98, 291.
24 Wang S, Zhu S, Cheng J, et al. Journal of Alloys and Compounds, 2017, 690, 612.
25 Jin Y W. Preparation and friction and wear properties of (SiCp+Gr)/6092Al composite materials. Master’s Thesis, Shenyang University of Technology, China, 2020(in Chinese).
金延文. (SiCp+Gr)/6092Al复合材料的制备与摩擦磨损性能研究. 硕士学位论文, 沈阳工业大学, 2020.
26 Shinde D M, Sahoo P, Davim J P. Composites and Advanced Materials, 2020, 29(10), 28.
27 Chen Y, Xing J D, Zhang Y Z, et al. Tribology, 2001(4), 251(in Chinese).
陈跃, 邢建东, 张永振, 等. 摩擦学学报, 2001(4), 251.
28 Murakami T, Korenaga A, Ohana T, et al. Intermetallics, 2018, 100, 151.
29 Rahiman A H S, Smart D S R, Wilson B, et al. Wear, DOI:10. 1016/j. wear. 2020. 203471.
30 Benamor A, Kota S, Chiker N, et al. Journal of the European Ceramic Society, 2019, 39(4), 868.
[1] 姜文平, 庞兴志, 何娟霞, 杨文超, 湛永钟. 骨修复用钛合金-羟基磷灰石复合材料的制备工艺及性能综述[J]. 材料导报, 2025, 39(5): 24090227-14.
[2] 谢晓明, 沈鹰, 刘秀波, 朱正兴, 李明曦. Mn含量对激光熔覆FeCoCrNiMnx高熵合金涂层高温摩擦学性能的影响[J]. 材料导报, 2024, 38(23): 23120066-9.
[3] 许玉婷, 李玉泽, 王建元. 选区激光熔化铝合金及其复合材料的研究进展[J]. 材料导报, 2024, 38(15): 23100101-13.
[4] 吴嘉伦, 夏敏, 王军峰, 葛昌纯. 电极感应熔炼气雾化法制备粉末冶金增材制造原材料金属粉末的研究综述[J]. 材料导报, 2023, 37(21): 22040132-8.
[5] 王整, 蔡召兵, 陈飞寰, 董颖辉, 张坡, 陈娟, 古乐, 曾良才. 环境和法向载荷对(TiVCrAlMo)N高熵合金薄膜摩擦学性能的影响[J]. 材料导报, 2023, 37(18): 22050049-7.
[6] 杨新异, 黄群英. 球磨转速对含钆ODS钢中M23C6析出的影响研究[J]. 材料导报, 2023, 37(17): 22030003-6.
[7] 吴靓, 周子坤, 姬丽, 肖逸锋, 张乾坤. 多孔Ni-Cu-Ti电极的制备及析氢性能[J]. 材料导报, 2023, 37(13): 21100074-9.
[8] 颉芳霞, 黄家兵, 曹澍, 杨豪, 何雪明. 钛合金羟基磷灰石骨植入复合材料的研究进展[J]. 材料导报, 2023, 37(13): 21070222-7.
[9] 张爵灵, 王林山, 郑逢时, 胡强, 汪礼敏. 粉末冶金多孔铝的研究进展[J]. 材料导报, 2023, 37(12): 21100151-8.
[10] 李伟, 曹睿, 闫英杰. 不同热处理态下粉末冶金花纹钢的组织性能及拉伸断裂行为[J]. 材料导报, 2022, 36(9): 21020104-7.
[11] 高士康, 赵洪运, 李高辉, 周利, 刘会杰, 张成聪. 铝基复合材料搅拌摩擦焊研究现状[J]. 材料导报, 2022, 36(24): 21040264-9.
[12] 解传滨, 吴皓然, 王慧聪, 刘景叶, 张修海. Ni-xCr-ySc(x=5,15,25,35;y=0,1)合金的高温抗氧化性能[J]. 材料导报, 2022, 36(23): 21040192-5.
[13] 颉芳霞, 杨豪, 黄家兵, 何雪明, 俞经虎. 粉末冶金Ti-xNb-5Sn骨科合金的摩擦学行为[J]. 材料导报, 2022, 36(21): 21050088-5.
[14] 郭岩岩, 历长云, 冀国良, 许磊, 王亚松, 米国发. 粉末致密化过程数值模拟研究现状[J]. 材料导报, 2022, 36(18): 20080161-7.
[15] 杨海屹, 张莎莎, 姚正军, 刘子利. 电子束重熔对铁基粉末冶金表面耐磨性能的影响[J]. 材料导报, 2022, 36(17): 20100136-5.
[1] Pei HE, Weizhi YAO, Jianming LYU, Bo GAO, Xianrong LI. Radiation Resistance Design and Nanoscale Second-phase Particles Characterization for ODS Steels: a Review[J]. Materials Reports, 2018, 32(1): 34 -40 .
[2] ZHANG Wenpei, LI Huanhuan, HU Zhili, QIN Xunpeng. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting[J]. Materials Reports, 2017, 31(13): 85 -89 .
[3] YANG Xiaojie, DONG Binghai, CHEN Fengxiang, WAN Li, ZHAO Li, WANG Shimin. One-dimensional TiO2 Photoanodes for Dye-sensitized Solar Cells: Fabrication and Applications[J]. Materials Reports, 2017, 31(17): 138 -145 .
[4] TAO Lei, ZHENG Yunwu,DI Mingwei, ZHANG Yanhua, ZHENG Zhifeng. Preparation of Porous Carbon Nanofiber from Liquid Phenolic Resin and Its Characterization[J]. Materials Reports, 2017, 31(10): 101 -106 .
[5] ZHU Lijuan, WANG Min, GU Zhengwei, HE Lingling. Research on Stretch Bending Forming of Stainless Steel Curved Beam[J]. Materials Reports, 2017, 31(24): 179 -181 .
[6] SU Lan, ZHANG Chubo, WANG Zhen, MI Zhenli. Finite Element Simulation of Electromagnetic Induction Heating in Hot Metal Gas Forming[J]. Materials Reports, 2017, 31(24): 182 -177 .
[7] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[8] FU Yu, HE Junbao, ZHANG Ping, LENG Yumin, MA Benyuan, LI Jiyan. Single Crystal Growth and Physical Properties of Layered Transitional Metal Bismuthide BaAg2-δBi2[J]. Materials Reports, 2018, 32(12): 2043 -2046 .
[9] LIU Huan, HUA Zhongsheng, HE Jiwen, TANG Zetao, ZHANG Weiwei, LYU Huihong. Indium Recovery from Waste Indium Tin Oxide: a Technological Review[J]. Materials Reports, 2018, 32(11): 1916 -1923 .
[10] HUANG Wenxin, LI Jun, XU Yunhe. Research Progress on Manganese Dioxide Based Supercapacitors[J]. Materials Reports, 2018, 32(15): 2555 -2564 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed