Please wait a minute...
材料导报  2025, Vol. 39 Issue (8): 23100253-6    https://doi.org/10.11896/cldb.23100253
  无机非金属及其复合材料 |
固体氧化物电池金属连接体锰钴涂层材料研究进展
韩帅文1,2, 朱可晟1, 刘长洋1,2, 刘子良1,2, 卞刘振1,2, 杨礼林1,*
1 内蒙古科技大学材料与冶金学院,内蒙古 包头 014010
2 内蒙古自治区先进陶瓷材料与器件重点实验室,内蒙古 包头 014010
Research Progress of Manganese-Cobalt Coating Materials on Metal Interconnects of Solid Oxide Fuel Cells
HAN Shuaiwen1,2, ZHU Kesheng1, LIU Changyang1,2, LIU Ziliang1,2, BIAN Liuzhen1,2, YANG Lilin1,*
1 School of Materials and Metallurgy, Inner Mongolia University of Science and Technology, Baotou 014010, Inner Mongolia, China
2 Inner Mongolia Key Laboratory of Advanced Ceramic Materials and Devices, Baotou 014010, Inner Mongolia, China
下载:  全 文 ( PDF ) ( 2735KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 金属连接体作为固体氧化物电池(Solid oxide cells,SOCs)的核心组件,在工作温度范围内会发生严重的氧化和高价铬挥发导致阴极Cr中毒,从而降低电池性能与寿命。在金属连接体表面添加锰钴尖晶石涂层是防止其失效的有效手段,但是锰钴涂层存在电导率低、烧结致密度差的问题。本文综述了近年来SOCs金属连接体防护用锰钴涂层的制备方法、成分设计对电导率、热膨胀系数、抗氧化性能等的影响。稀土元素与过渡金属元素的共同掺杂可以协同调控锰钴尖晶石涂层的电导率和抗氧化性能。此外,对锰钴涂层的设计、制备技术和性能改进提出了未来发展方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
韩帅文
朱可晟
刘长洋
刘子良
卞刘振
杨礼林
关键词:  固体氧化物电池(SOCs)  金属连接体  铁素体不锈钢  锰钴尖晶石涂层  掺杂    
Abstract: As the key component of solid oxide cells (SOCs), the metallic interconnector experiences serious oxidation and high-valence chromium vo-latilization, resulting in the Cr poisoning on the cathode and degradation of cell performance. Manganese cobalt spinel coating on the surfaces of metal interconnectors is an effective strategy to prevent their failure;however, these coatings also have problems, such as relatively low conductivity and poor sintering density. This article reviews the effect of preparation methods and composition design of manganese cobalt coa-tings on the conductivity, thermal expansion coefficient, and oxidation resistance of SOCs metal interconnectors in recent years. The results indicate that the co-doping of rare earth and transition metal elements can synergistically regulate the conductivity and oxidation resistance of manganese cobalt spinel coatings. Finally, we provide future development directions for the design, preparation technology, and performance improvement of manganese cobalt coatings.
Key words:  solid oxide cells(SOCs)    metal interconnector    ferritic stainless steel    Mn-Co spinel coating    doping
出版日期:  2025-04-25      发布日期:  2025-04-18
ZTFLH:  TG174.44  
基金资助: 国家自然科学基金(52202257);内蒙古自治区科技攻关计划(2020GG0155);内蒙古自治区科技创新引导奖励资金项目(0902062001);内蒙古科技大学创新基金(2019QDL-B05)
通讯作者:  杨礼林,博士,内蒙古科技大学材料与冶金学院讲师、硕士研究生导师。目前主要从事新能源相关的金属材料组织与性能调控等方面的研究。yangwillin@163.com   
作者简介:  韩帅文,内蒙古科技大学材料与冶金学院硕士研究生,在杨礼林老师的指导下进行研究。目前主要研究领域为新能源相关金属涂层材料。
引用本文:    
韩帅文, 朱可晟, 刘长洋, 刘子良, 卞刘振, 杨礼林. 固体氧化物电池金属连接体锰钴涂层材料研究进展[J]. 材料导报, 2025, 39(8): 23100253-6.
HAN Shuaiwen, ZHU Kesheng, LIU Changyang, LIU Ziliang, BIAN Liuzhen, YANG Lilin. Research Progress of Manganese-Cobalt Coating Materials on Metal Interconnects of Solid Oxide Fuel Cells. Materials Reports, 2025, 39(8): 23100253-6.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.23100253  或          https://www.mater-rep.com/CN/Y2025/V39/I8/23100253
1 Kong W, Han Z, Lu S, et al. International Journal of Hydrogen Energy, 2020, 45(39), 20329.
2 Bianco M, Caliandro P, Diethelm S, et al. Journal of Power Sources, 2020, 461, 228163.
3 Abdoli H, Molin S, Farnoush H. Materials Aterials Letters, 2020, 259, 126898.
4 Shen F, Reisert M, Wang R, et al. ACS Applied Energy Materials, 2022, 5(8), 9383.
5 Zhu W Z, Deevi S C. Materials Science and Engineering A, 2003, 348(1-2), 227.
6 Li Y, Jiang Y, Wu J, et al. International Journal of Applied Ceramic Technology, 2010, 7(1), 41.
7 Quadakkers W J, Piron-Abellan J, Shemet V, et al. Materials at high temperatures, 2003, 20(2), 115.
8 Acchar W, Sousa C R C, Mello-Castanho S R H. Materials Science and Engineering A, 2012, 550, 76.
9 Wang S, Dong Y, Lin B, et al. Materials Research Bulletin, 2009, 44(11), 2127.
10 Zhu J H, Zhang Y, Basu A, et al. Surface and Coatings Technology, 2004, 177, 65.
11 Yakabe H, Yasuda I. Journal of the Electrochemical Society, 2002, 150(1), A35.
12 Fergus J W. Materials Science and Engineering A, 2005, 397(1-2), 271.
13 Liu Z G, Dong D W, Huang X Q, et al. Electrochemical and Solid-State Letters, 2005, 8(5), A250.
14 Mikkola J, Couturier K, Talic B, et al. Energies, 2022, 15(3), 1168.
15 Jiang Z, Wen K, Liu T, et al. Surface Technology, 2022, 51(4), 14.
16 Han M F, Li Z, Du X J, et al. Rare Metal Materials and Engineering, 2009, 38(S2), 708(in Chinese).
韩敏芳, 李震, 杜晓佳, 等. 稀有金属材料与工程, 2009, 38(S2), 708.
17 Wang Z L, Han M F, Chen X. World Sci-Tech R & D, 2007(1), 30(in Chinese).
王忠利, 韩敏芳, 陈鑫. 世界科技研究与发展, 2007(1), 30.
18 Jiang Z, Wen K, Liu T K, et al. Surface Technology , 2022, 51(4), 14 (in Chinese).
江舟, 文魁, 刘太楷, 等. 表面技术, 2022, 51(4), 14.
19 Shen Z J. Surface modification of SUS430 metal interconnects and their oxidation behavior in cathodic and anodic atmospheres. Master's Thesis, Kunming University of Science and Technology, China, 2020 (in Chinese).
沈正军. SUS430金属连接体表面改性及其阴、阳极气氛氧化行为研究. 硕士学位论文, 昆明理工大学, 2020.
20 Xin X S, Zhu Q S, Liu Yan. Surface Technology, 2019, 48(1), 22(in Chinese).
辛显双, 朱庆山, 刘岩. 表面技术, 2019, 48(1), 22.
21 Cao X W, Zhang Y X, Lin M, et al. Foshan Ceramics, 2019, 29(10), 5(in Chinese).
曹希文, 张雅希, 林梅, 等. 佛山陶瓷, 2019, 29(10), 5.
22 Wu X F, Zhang W Q, Yu B, et al. Rare Metal Materials and Engineering, 2015, 44(6), 1555(in Chinese).
吴小芳, 张文强, 于波, 等. 稀有金属材料与工程, 2015, 44(6), 1555.
23 Zhang W W, Zhan Z L. Thermal Processing, 2013, 42(10), 27(in Chinese).
张卫伟, 詹肇麟. 热加工工艺, 2013, 42(10), 27.
24 Zhu W Z, Deelvi S C. Materials Research Bulletin, 2003, 38(6), 957.
25 Mah J C W, Muchtar A, Somalu M R, et al. International Journal of Hydrogen Energy, 2017, 42(14), 9219.
26 Zhao Q, Geng S, Chen G, et al. Materials Letters, 2022, 306, 130955.
27 Zhang Y, Wang B Y, Zhao L X, et al. Materials Reports, 2014, 28(21), 15(in Chinese).
张勇, 王博煜, 赵丽霞, 等. 材料导报, 2014, 28(21), 15.
28 Hua B. Oxidation, conductivity and surface modification of metallic interconnect materials for solid oxide fuel cells. Ph. D. Thesis, Huazhong University of Science and Technology, China, 2010(in Chinese).
华斌. 固体氧化物燃料电池金属连接体材料的氧化和导电性以及表面改性. 博士学位论文, 华中科技大学, 2010.
29 Hua B, Kong Y H, Lu S F, et al. Chinese Science Bulletin, 2010, 55(11), 1055(in Chinese) .
华斌, 孔永红, 卢凤双, 等. 科学通报, 2010, 55(11), 1055.
30 Yang Z, Xia G, Li X, et al. International Journal of Hydrogen Energy, 2007, 32(16), 3648.
31 Joshi S, Petric A. International Journal of Hydrogen Energy, 2017, 42(8), 5584.
32 Zhang W, Pu J, Chi B, et al. Journal of Power Source, 2011, 196(13), 5591.
33 Pan Y, Geng S, Chen G, et al. Materials Letters, 2021, 297, 129967.
34 Shen Z, Rong J, Yu X. Ceramics International, 2020, 46(5), 5821.
35 Hassan M A, Bin M O. Processes, 2020, 8(9), 1113.
36 Zhang L, Zhu M, Zhang H. Surface Technology, 2017, 46(4), 150.
37 Spotorno R, Piccardo P, Perrozzi F, et al. Fuel Cells, 2015, 15(5), 728.
38 Visvanichkul R, Puengjinda P, Jiwanuruk T, et al. International Journal of Hydrogen Energy, 2021, 46(7), 4903.
39 Li F, Zhang P, Zhao Y, et al. International Journal of Hydrogen Energy, 2023, 48(42), 16048.
40 Zanchi E, Sabato A G, Monterde M C, et al. Materials & Design, 2023, 227, 111768.
41 Smeacetto F, De Miranda A, Cabanas Polo S, et al. Journal of Power Sources, 2015, 280, 379.
42 Jia C, Wang Y, Mol. Journal of Alloys and Compounds, 2019, 787, 1327.
43 Zou Janbo, Wen Kui, Song Chen, et al. Materials Research and Application, 2021, 15(2), 125(in Chinese).
邹建波, 文魁, 宋琛, 等. 材料研究与应用, 2021, 15(2), 125.
44 Wang X, Si X, Gao J, et al. Journal of Cleaner Production, 2023, 389, 136107.
45 Wang X, Si X, Li C, et al. ACS Applied Energy Materials, 2021, 4(7), 7346.
46 Thaheem I, Joh D W, Noh T, et al. Journal of Industrial and Engineering Chemistry, 2021, 96, 315.
47 Saeidpour F, Ebrahimifar H. Corrosion Science, 2021, 182, 109280.
48 Tseng H P, Yung T Y, Liu C K. International Journal of Hydrogen Energy, 2020, 45(22), 12555.
49 Song C, Xie S M, Fan X J, et al. Surface & Coatings Technology, 2020, 402, 126281.
50 Mosavi A, Ebarhimifar H. International Journal of Hydrogen Energy, 2020, 45(4), 3145.
51 Zhu J H, Lewis M J, Du S W, et al. Thin Solid Films, 2015, 596, 179.
52 Jin Y, Hao G, Guo M, et al. Ceramics International, 2022, 48(23), 34931.
53 Gavrilov N V, Ivanov V V, Kamentskikh A S, et al. Surface and Coatings Technology, 2011, 206(6), 1252.
54 Brylewski T, Molin S, Marczynski M, et al. International Journal of Hydrogen Energy, 2021, 46(9), 6775.
55 Demeneva N V, Kononenko O V, Matveev D V, et al. Materials Letters, 2019, 240, 201.
56 Xu Y, Wen Z, Wang S, et al. Solid State Ionics, 2011, 192(1), 561.
57 Mazur L, Molin S, Dabek J, et al. Journal of Thermal Analysis and Calorimetry, 2022, 147, 5649.
58 Montero X, Tietz F, Sebold D, et al. Journal of Power Sources, 2008, 184(1), 172.
59 Naik M, Rajasekaran B. Transactions of the Indian Institute of Metals, 2022, 76(5), 1263.
60 Javed H, Saunders T, Reece M J, et al. Ceramics International, 2021, 47(12), 17804.
61 Mah J C W, Aznam I, Muchtar A, et al. Energies, 2023, 16(3), 1382.
62 Acharya N, Sagar R. Ceramics International, 2023, 49(17), 29164.
63 Ou D R, Cheng M, Wang X L. Journal of Power Sources, 2013, 236, 200.
64 Shao Y, Guo P Y, Sun H, et al. Journal of Alloys and Compounds, 2019, 811, 152006.
65 Taweesup K, Khotsombat S, Chubanjong K, et al. Anti-Corrosion Methods and Materials, 2019, 66(5), 689.
66 Kanyarat W, Limprapard P, Siripongsakul T, et al. Materals Testing, 2017, 59(11-12), 951.
67 Masi A, Bellusci M, Mcphail S J, et al. Journal of the European Ceramic Society, 2017, 37(2), 661.
68 Xiao J, Zhang W, Xiong C, et al. International Journal of Hydrogen Energy, 2015, 40(4), 1868.
69 Masi A, Bellusci M, Mcphail S J, et al. Ceramics International, 2017, 43(2), 2829.
70 Brylewski T, Kruk A, Bobruk M, et al. Journal of Power Sources, 2016, 333, 145.
71 Ma Z B, Wang M H, Zhang Y S, et al. Vacuum, 2022, 204, 111352.
72 Wang B, Li K, Liu J, et al. International Journal of Hydrogen Energy, 2024, 61, 216.
73 Zhao Q, Geng S, Zhang Y, et al. Journal of Alloys and Compounds, 2022, 908, 164608.
74 Qiao W Q, Li Y W, Zhang Y S, et al. Materials Today Communications, 2024, 38, 108061.
[1] 刘宇, 张健, 庞小通, 周小杰, 卢先正, 陈小敏, 李佳豪, 彭平. 镧镍系合金对氢化镁组织结构与储氢性能的影响及机理[J]. 材料导报, 2025, 39(8): 24040039-6.
[2] 陈旭, 廖静, 谭理, 李海进. 金属卤化物钙钛矿材料自掺杂研究进展[J]. 材料导报, 2025, 39(7): 24020097-9.
[3] 鲍艳, 谢梦爽, 郭茹月, 张婧. VO2智能调温涂层的研究进展[J]. 材料导报, 2025, 39(7): 24030036-7.
[4] 龙武剑, 唐懿, 郑淑仪, 何闯. 氮掺杂石墨烯量子点作为新型碳钢缓蚀剂:从设计到机理[J]. 材料导报, 2025, 39(7): 23100196-10.
[5] 李门, 李天鹏, 郭爱强, 刘建国, 高欣宝. vG和Cu/vG体系对H2O吸附的第一性原理研究[J]. 材料导报, 2025, 39(6): 23120052-5.
[6] 李辉, 郭文尧, 肖强强, 王梦千, 杜守勤, 李国宁, 李诗杰, 郭敏, 马晓玲. Zn掺杂ZIF-67构筑光热-相变储能一体化材料的性能研究[J]. 材料导报, 2025, 39(6): 23100236-7.
[7] 赵伟馨, 彭孔浩, 武玥, 郭文, 高鹤然, 张凌燕, 彭微, 李淑荣, 孟佩俊. PEI-NaGdF4:Yb3+,Tm3+稀土掺杂上转换纳米材料的制备及性能[J]. 材料导报, 2025, 39(5): 24120175-7.
[8] 陈阿青, 梁轻. Nb掺杂二氧化钛纳米管电子结构第一性原理计算[J]. 材料导报, 2025, 39(4): 23100185-6.
[9] 邹振羽, 刘伟, 李朋娟, 李晓丽. 共活化法制备等级多孔炭材料及其储能性能研究[J]. 材料导报, 2025, 39(3): 23080193-7.
[10] 邢建祥, 杨延朴, 杨集舜, 徐越, 杨廷海, 杨刚. Al掺杂LiNi0.5Co0.2Mn0.3O2材料结构改性及电化学性能研究[J]. 材料导报, 2025, 39(1): 23120197-5.
[11] 官春艳, 郑启泾, 万正环, 杨锦瑜. 溶胶-凝胶法制备Gd4Ga2O9: Dy3+白光发射荧光粉及其性能[J]. 材料导报, 2024, 38(8): 22100218-6.
[12] 唐江城, 赵先兴, 蔡润田, 杨城昊, 池波. Mn离子掺杂Pr0.5Ba0.5Fe0.9Mn0.1O3-δ钙钛矿SOEC阴极电解CO2性能研究[J]. 材料导报, 2024, 38(8): 23040185-6.
[13] 方瑜, 李靖, 孔维超, 周雪, 徐林, 孙冬梅, 唐亚文. 纳米碳片负载Mott-Schottky型Co/Co9S8异质结的原位合成及电催化性能研究[J]. 材料导报, 2024, 38(8): 23040234-7.
[14] 列维茨基·谢尔盖, 曹泽祥, 柯巴·亚历山大, 柯巴·玛丽亚. 激光辐射波长和脉冲寿命对碲化镉熔化阈值的影响[J]. 材料导报, 2024, 38(7): 22120127-6.
[15] 于凯, 王静静, 刘平, 马迅, 张柯, 马凤仓, 李伟. 二硫化钼自润滑涂层性能及制备工艺的研究进展[J]. 材料导报, 2024, 38(7): 22080088-10.
[1] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[2] WU Wei, CHEN Shiying, ZONG Mengjingzi. Dielectric Properties and Thermal Stability of Nano-Al2O3/Polyether Sulfone-epoxy Resin Composites[J]. Materials Reports, 2017, 31(20): 21 -24 .
[3] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[4] MO Peicheng, WU Yi, YU Wenlin, WANG Jilin, ZOU Zhengguang, ZHONG Shenglin, WANG Peng. In Situ Synthesis of PcBN Composites by cBN-Ti-Al-Si and Their Mechanical Property[J]. Materials Reports, 2018, 32(14): 2355 -2359 .
[5] HU Yaoqiang, CHEN Fajin, LIU Haining, ZHANG Huifang, WU Zhijian, YE Xiushen. Preparation of Poly(N-isopropylacrylamide) Hydrogel and Its Thermally Induced Aggregation Behavior[J]. Materials Reports, 2018, 32(14): 2491 -2496 .
[6] SONG Gang, CHI Jiayu, YU Jingwei, LIU Liming. Corrosion Behavior of Mg-steel Laser-TIG Hybrid Welding Joint[J]. Materials Reports, 2018, 32(16): 2773 -2777 .
[7] HUANG Hui, HAN Jianfeng, WANG Yishun, XIA Yang, ZHANG Jun, GAN Yongping, LIANG Chu, ZHANG Wenkui. Supercritical CO2 Assisting Cladding of LiMnPO4 on the Surface of Li[Li0.2-Mn0.54Co0.13Ni0.13]O2 and Its Electrochemical Properties[J]. Materials Reports, 2018, 32(23): 4072 -4078 .
[8] WANG Zhonghui, XIN Yong. Molecular Dynamics Simulation on the Relationship of Oxygen Diffusion and Polymer Chains Activity[J]. Materials Reports, 2019, 33(8): 1293 -1297 .
[9] CHANG Jingjing. Spin Coating Epitaxial Films[J]. Materials Reports, 2019, 33(12): 1919 -1920 .
[10] ZHUANG Xiaodong, LI Rongxing, YU Xiaohua, XIE Gang, HE Xiaocai, XU Qingxin. Preparation of Lithium Titanate Electrode Materials by Solid Phase Method[J]. Materials Reports, 2019, 33(16): 2654 -2659 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed