Please wait a minute...
材料导报  2025, Vol. 39 Issue (6): 24050040-10    https://doi.org/10.11896/cldb.24050040
  金属与金属基复合材料 |
含Al耐热合金高温氧化行为研究现状
姚通睿1, 王曼1, 席晓丽1,2,*
1 北京工业大学材料循环低碳再生全国重点实验室,北京 100124
2 北京工业大学材料科学与工程学院,首都资源循环材料技术省部共建协同创新中心,北京 100124
Research Status of High-temperature Oxidation Behavior of Al-containing Heat-resistant Alloys
YAO Tongrui1, WANG Man1, XI Xiaoli1,2,*
1 State Key Laboratory of Materials Low-Carbon Recycling, Beijing University of Technology, Beijing 100124, China
2 Collaborative Innovation Center of Capital Resource-Recycling Material Technology, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
下载:  全 文 ( PDF ) ( 40229KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 耐热合金因其优异的抗氧化性能在高温领域具有重要的应用,其中镍基和铁基耐热合金的应用更为广泛。随着“双碳”战略目标的提出,航空航天及能源技术不断发展使耐热合金的服役环境更加苛刻,这对耐热合金服役性能提出了更大挑战,因此亟需开发具有更优异高温抗氧化性能的新型耐热合金。合金化元素Al所形成的Al2O3膜具有较低生长速率、较高致密性及优异的热稳定性,因此含Al耐热合金成为近年来的研究热点。本文通过系统梳理相关研究成果,比较了3种抗氧化元素所形成保护性氧化膜的优劣,回顾了含Al耐热合金的发展历程,归纳了影响含Al镍基和铁基合金氧化行为的关键因素,总结分析了其高温氧化的微观机制并归纳了共性规律。最后,对含Al耐热合金现阶段存在的问题及未来发展方向进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
姚通睿
王曼
席晓丽
关键词:  含Al耐热合金  高温抗氧化  保护性氧化膜  成分设计  显微组织    
Abstract: Heat-resistant alloys have important applicationsin high-temperature servicing environment due to their excellent oxidation resistance, among which nickel-based and iron-based heat-resistant alloys are more widely used. With the proposal of “dual carbon” strategic target, the continuously developed aerospace and energy technologies make the servicing environment harsher, which puts forward a greater challenge to heat-resistant alloys. Therefore, it is urgent to develop new types of heat-resistant alloys with superior high-temperature oxidation resistance. Protective Al2O3 film formed through addition of Al exhibits characteristics of low growth rate, high densification and excellent thermal stability, making Al-containing heat-resistant alloys apopular research topic recently. In this summary,the advantages and disadvantages of three kinds of protective oxide films were compared. Then, the development of Al-containing heat-resistant alloys was reviewed. Moreover, the key factors affecting the oxidation behavior of Al-containing nickel-based and iron-based alloys were analyzed, and the microscopic oxidation mechanism and common laws of the these alloys under high temperature were extracted. Finally, the problems existing at the present stage and the future development direction of Al-containing heat-resistant alloys were prospected.
Key words:  Al-containing heat-resistant alloy    high temperature oxidation resistance    protective oxide film    composition design    microstructure
出版日期:  2025-03-25      发布日期:  2025-03-24
ZTFLH:  TG14  
基金资助: 国家重点研发计划(2023YFB3811800);国家自然科学基金-国家杰出青年科学基金(52025042)
通讯作者:  *席晓丽,北京工业大学材料科学与工程学院教授、博士研究生导师。国家杰出青年科学基金、国家自然科学基金优秀青年科学基金获得者。主要从事稀缺金属材料高效循环再造、难熔金属材料与环境电化学、冶金过程仿真模拟等科研工作。xixiaoli@bjut.edu.cn   
作者简介:  姚通睿,北京工业大学材料科学与工程学院硕士研究生,在席晓丽教授的指导下进行研究。目前主要从事含Al耐热合金成分设计、制备及氧化行为研究。
引用本文:    
姚通睿, 王曼, 席晓丽. 含Al耐热合金高温氧化行为研究现状[J]. 材料导报, 2025, 39(6): 24050040-10.
YAO Tongrui, WANG Man, XI Xiaoli. Research Status of High-temperature Oxidation Behavior of Al-containing Heat-resistant Alloys. Materials Reports, 2025, 39(6): 24050040-10.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24050040  或          https://www.mater-rep.com/CN/Y2025/V39/I6/24050040
1 Li D H, Wang K, Zhu X Y, et al. Materials and Corrosion-Werkstoffe Und Korrosion, 2022, 73(11), 1865.
2 Teng J W, Gong X J, Yang B B, et al. Corrosion Science, 2022, 198, 110141.
3 Ren J, Yu L M, Liu C X, et al. Corrosion Science, 2022, 195, 110008.
4 Wang M. Study on microstructure stability and mechanical properties of new austenitic steel. Ph. D. Thesis, Beijing University of Science and Technology, China, 2017 (in Chinese).
王曼. 新型奥氏体钢显微组织结构稳定性及力学性能的研究. 博士学位论文, 北京科技大学, 2017.
5 Sui X M, Hu J, Zhang L, et al. Surface Technology, 2020, 49(10), 18 (in Chinese).
隋欣梦, 胡记, 张林, 等. 表面技术, 2020, 49(10), 18.
6 Tang S F, Yang J, Tang P J, et al. Materials Engineering, 2023, 51(3), 12 (in chinese).
汤素芳, 杨嘉, 唐鹏举, 等. 材料工程, 2023, 51(3), 12.
7 Suryanarayana C, Al-Aqeeli N. Progress in Materials Science, 2013, 58(4), 383.
8 Li M S, Qian Y H, Xin L. Corrosion Science and Protection Technology, 1999, 11(5), 284 (in chinese).
李美栓, 钱余海, 辛丽. 腐蚀科学与防护技术, 1999, 11(5), 284.
9 Birks N, Meier G H, Pettit F S. Introduction to the high temperature oxidation of metals, Cambridge University Press, UK, 2006, pp. 134.
10 Ahmad B, Fox P. Oxidation of Metals, 1999, 52(1-2), 113.
11 Nguyen T D, Zhang J Q, Young D J. Corrosion Science, 2020, 170(1), 108702.
12 Ma S Y. The effect of alloying elements cr, al, and si on the oxidation resistance of nickel based high-temperature alloys. Master's Thesis, Zhejiang University, China, 2023 (in Chinese).
马苏钰. 合金元素Cr、Al和Si对镍基高温合金抗氧化性的影响. 硕士学位论文, 浙江大学, 2023.
13 Li X L, Chen B, Xing W W, et al. Journal of Materials Research, 2018, 32(12), 9 (in Chinese).
李小亮, 陈波, 邢炜伟, 等. 材料研究学报, 2018, 32(12), 9.
14 Yamamoto Y, Brady M P, Lu Z P, et al. Science, 2007, 316(5823), 433.
15 Berthod P. Oxidation of Metals, 2005, 64(3), 235.
16 Airiskallio E, Nurmi E, Heinonen M, et al. Corrosion Science, 2010, 52(10), 3394.
17 Niu Y, Zhang X J, Wu Y, et al. Corrosion Science, 2006, 48(12), 4020.
18 Xu Q, Zhang X H, Han C J, et al. Solid Rocket Technology, 2002, 25(3), 5 (in chinese).
徐强, 张幸红, 韩杰才, 等. 固体火箭技术, 2002, 25(3), 5.
19 Giggins C S, Pettit F S. Journal of the Electrochemical Society, 1971, 118(11), 1782.
20 Wang Q Z. Steel, 1981(4), 75 (in chinese).
王庆珠. 钢铁, 1981(4), 75.
21 Xu Y L, Fu H, Fan L J, et al. Corrosion Science, 2019, 161, 108192.
22 Yan J J, Huang X F, Huang W G. International Journal of Minerals, Metallurgy and Materials, 2020, 27(9), 1244.
23 Zhang Y B, Zou D N, Li Y N, et al. Journal of Materials Research and Technology, 2021, 11, 1730.
24 Kvernes I, Oliveira M, Kofstad P. Corrosion Science, 1977, 17(3), 237.
25 Brady M P, Yamamoto Y, Santella M L, et al. Scripta Materialia, 2007, 57(12), 1117.
26 Brady M P, Unocic K A, Lance M J, et al. Oxidation of Metals, 2011, 75(5-6), 337.
27 Brady M P, Yamamoto Y, Santella M L, et al. Oxidation of Metals, 2009, 72(5-6), 311.
28 Stott F H, Wood G C, Stringer J. Oxidation of Metals, 1995, 44(1-2), 113.
29 Brady M P, Wright I G, Gleeson B. JOM, 2000, 52(1), 16.
30 Xu X Q, Zhang X F, Chen G L, et al. Materials Letters, 2011, 65(21-22), 3285.
31 Xu X Q, Zhang X F, Sun X Y, et al. Oxidation of Metals, 2012, 78(5), 349.
32 Li Q, Song P, Li Z H, et al. Nuclear Materials and Energy, 2023, 34, 101381.
33 Narukawa T, Kondo K, Fujimura Y, et al. Journal of Nuclear Materials, 2023, 587(15), 154736.
34 Lipkina K, Hallatt D, Geiger E, et al. Journal of Nuclear Materials, 2020, 541(1), 152305.
35 Gamanov Š, Holzer J, Roupcová P, et al. Corrosion Science, 2022, 206, 110498.
36 Li Z Y, Chen L J, Zhang H Y, et al. Materials, 2021, 14(3), 526.
37 Stratil L, Horník V, Dymáek P, et al. Metals, 2020, 10(11), 1478.
38 McGurty J A. U. S. patent, 05/788396, 1978.
39 Ramakrishnan V, McGurty J A, Jayaraman N. Oxidation of Metals, 1988, 30(3), 185.
40 Rybicki G C, Smialek J L. Oxidation of Metals, 1989, 31(3), 275.
41 Brumm M, Grabke H J. Corrosion Science, 1992, 33, 1677.
42 Huang Y C, Peng X, Chen X Q. Journal of Alloys and Compounds, 2021, 863, 158666.
43 Huang Y C. Research on the phase transformation mechanism of high temperature thermal growth of aluminum oxide. Ph. D. Thesis, University of Science and Technology of China, China, 2019 (in Chinese).
黄渊超. 高温热生长氧化铝相变机理研究. 博士学位论文, 中国科学技术大学, 2019.
44 Lipkin D M, Clarke D R, Pompe W. Corrosion Science, 1997, 39(2), 231.
45 Peng X, Li T, Pan W P. Scripta Materialia, 2001, 44(7), 1033.
46 Yun D W, Seo S M, Jeong H W, et al. Journal of Alloys and Compounds, 2017, 710, 8.
47 Tang H P, Wang Y, Liu Y, et al. Journal of Central South University, 2013, 20(12), 3345.
48 Liu T, Wang C X, Shen H L, et al. Corrosion Science, 2013, 76, 310.
49 Liu T, Wang L B, Wang C X, et al. Corrosion Science, 2016, 104, 17.
50 Xia Y, Wang J, Meng H J, et al. Corrosion Science and Protection Technology, 2019, 31(2), 7(in Chinese).
夏焱, 王剑, 孟浩杰, 等. 腐蚀科学与防护技术, 2019, 31(2), 7.
51 Qiao Y J, Wang P, Qi W, et al. Journal of Alloys and Compounds, 2020, 828, 154310.
52 Palm M. Intermetallics, 2005, 13(12), 1286.
53 Airiskallio E, Nurmi E, Heinonen M H, et al. Corrosion Science, 2010, 52(10), 3394.
54 Zhang Z G, Gesmundo F, Hou P Y, et al. Corrosion Science, 2006, 48(3), 741.
55 Wagner C. Corrosion Science, 1965, 5(11), 751.
56 Josefsson H, Liu F, Svensson J E, et al. Materials and Corrosion, 2005, 56(11), 801.
57 Li D Q, Guo H B, Wang D, et al. Corrosion Science, 2013, 66, 125.
58 Pint B A, More K L, Tortorelli P F, et al. Materials Science Forum, 2001, 369, 411.
59 Cotell C M, Yurek G J, Hussey R J, et al. Oxidation of Metals, 1990, 34(3), 173.
60 Li D Q, Zhou L X, Xi Y P, et al. Journal of Alloys and Compounds, 2017, 692, 427.
61 Burtin P, Brunelle J P, Pijolat M, et al. Applied Catalysis, 1987, 34, 239.
62 Pint B A. Oxidation of Metals, 1996, 45(1), 1.
63 Gao W, Liu Z Y, Li Z. Advanced Materials, 2001, 13(12-13), 1001.
64 Li Q, Peng X, Zhang J Q, et al. Corrosion Science, 2010, 52(4), 1213.
65 Wang X Y, Xin L, Wang F H, et al. Journal of Materials Science & Technology, 2014, 30(9), 867.
66 Wang F S. Optimal Control Applications and Methods, 1993, 14(1), 39.
67 Rittenhouse J, Luebbe M, Hoffman A, et al. Corrosion Science, 2024, 226, 111688.
68 Sun D J, Liang C Y, Shang J L, et al. Applied Surface Science, 2016, 385, 587.
69 Stringer J, Wilcox B A, Jaffee R I. Oxidation of Metals, 1972, 5(1), 11.
[1] 王森巍, 王丽, 王明庆, 佘加, 易嘉琰, 陈先华, 潘复生. Mg-xSc(x=0.5,1.0,3.0,5.0)生物医用合金组织与性能研究[J]. 材料导报, 2025, 39(5): 24090019-8.
[2] 卞宏友, 柳金生, 刘伟军, 张广泰, 姚佳彬, 邢飞. 激光沉积修复GH738/K417G合金时效热处理组织性能分析[J]. 材料导报, 2025, 39(3): 23110265-6.
[3] 马东帅, 闫二虎, 白金旺, 王豪, 张硕, 王艺豪, 李唐卫, 郭智洁, 周子锐, 邹勇进, 孙立贤. V-Ti-Fe三元合金显微组织、氢传输行为及耐蚀性能研究[J]. 材料导报, 2024, 38(8): 22110007-7.
[4] 程立宏, 周裕琦, 王建峰, 李柱, 穆战, 占小红. 焊丝成分对国产Invar合金GTAW接头组织差异性的影响[J]. 材料导报, 2024, 38(23): 23080151-6.
[5] 毕广利, 冉吉上, 满宏生, 姜静, 孟帅举, 毕广阔, 王海东, 李元东. 挤压Mg-Y-Ni-Co合金的显微组织、加工性能及塑性变形行为[J]. 材料导报, 2024, 38(21): 23060144-8.
[6] 段逸飞, 王建利, 袁满, 王礼营, 杨忠, 李菲, 田皓. 镁锂合金中LPSO相的研究进展[J]. 材料导报, 2024, 38(20): 23020055-10.
[7] 张健, 朱智浩, 张爽, 董闯. 高Al含量的亚稳β型Ti-Al-Mo-Nb-V系列钛合金的组织与力学性能[J]. 材料导报, 2024, 38(2): 22040297-6.
[8] 吴长军, 朱付成, 王权, 彭浩平, 刘亚, 苏旭平. 600~1 000 ℃退火处理对FCC型CoxFeMnNi3-x合金组织演变及耐蚀性的影响[J]. 材料导报, 2024, 38(18): 23080153-7.
[9] 王婷, 胡斌, 王文琴, 王非凡. 微弧火花沉积Zr基非晶涂层的组织及性能[J]. 材料导报, 2024, 38(16): 22090308-6.
[10] 肖华强, 尹星贵, 冯进宇, 肖易, 龚玉婷. TC4钛合金表面激光熔覆Ti-Mo-Al-B复合涂层的组织及摩擦磨损性能[J]. 材料导报, 2024, 38(12): 22080075-6.
[11] 俞伟元, 董鹏飞, 吴保磊. 超音速火焰喷涂氧燃比对铁基非晶涂层性能的影响[J]. 材料导报, 2024, 38(12): 22120200-6.
[12] 王虎, 武少杰, 董翼纶, 程方杰. 热输入对埋弧增材厚壁构件微观组织与冲击韧性的影响[J]. 材料导报, 2024, 38(11): 22120217-5.
[13] 胡海波, 朱丽慧, 涂有旺, 段元满, 吴晓春, 顾炳福. 深冷处理工艺对M2高速钢显微组织与性能的影响[J]. 材料导报, 2023, 37(9): 21110028-6.
[14] 聂浩, 徐洋, 柯黎明, 邢丽. 转速对厚板铝/镁异种材料搅拌摩擦焊摩擦产热及界面组织的影响[J]. 材料导报, 2023, 37(8): 21090144-6.
[15] 黄仁君, 闫二虎, 陈运灿, 葛晓宇, 程健, 王豪, 刘威, 褚海亮, 邹勇进, 徐芬, 孙立贤. Nb-Ti-Fe合金的组织和耐腐蚀性能及置氢前后的显微硬度研究[J]. 材料导报, 2023, 37(7): 21070095-7.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed