Please wait a minute...
材料导报  2025, Vol. 39 Issue (6): 24050008-6    https://doi.org/10.11896/cldb.24050008
  无机非金属及其复合材料 |
MoC纳米晶/掺氮多孔碳的结构调控及在锂硫电池中的性能优化
张怿炜, 胡仁宗, 欧阳柳章, 刘军, 杨黎春*, 朱敏
华南理工大学材料科学与工程学院,广东省先进储能材料重点实验室,广州 510640
Structural Optimization of MoC Nanocrystals/Nitrogen-doped Porous Carbon for Enhanced Performance in Lithium-Sulfur Batteries
ZHANG Yiwei, HU Renzong, OUYANG Liuzhang, LIU Jun, YANG Lichun*, ZHU Min
Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
下载:  全 文 ( PDF ) ( 44894KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 多硫化物(LiPSs)的穿梭效应和迟缓的氧化还原动力学严重阻碍了锂硫电池的发展。鉴于此,本工作制备了一种负载于掺氮多孔碳(NPC)基体上的超细α-MoC纳米晶材料MoC/NPC,并通过调控碳源和钼源比例优化了碳对MoC纳米晶的限域作用。适当的MoC纳米晶尺寸和NPC含量的MoC/NPC对LiPSs具有最强的吸附作用并能够充分暴露亲硫反应活性位点,从而在有效抑制穿梭效应的同时加速Li2S沉积形核的反应动力学。最优产物MoC/NPC-12(碳源与钼源的质量比为12)用作硫载体且负载量约1.2 mg·cm-2时,表现出良好的倍率性能(4C,634.4 mAh·g-1)、高放电比容量(0.2C,1 203.9 mAh·g-1)以及优异的循环稳定性(1C倍率下循环400次的每圈容量衰减率仅为0.093%)。当硫负载量增加到3.8 mg·cm-2时,MoC/NPC-12@S的初始放电面容量为4.7 mAh·cm-2。本工作为锂硫电池催化剂载体材料的合理设计和优化提供了参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张怿炜
胡仁宗
欧阳柳章
刘军
杨黎春
朱敏
关键词:  锂硫电池  碳化钼  掺氮多孔碳  结构优化  催化转化  多硫化物吸附    
Abstract: The shuttle effect of lithium polysulfides (LiPSs) and the sluggish redox kinetics severely hinder the commercial application of lithium-sulfur batteries. The present work made a successful attempt to synthesize an ultrafine α-MoC nanocrystalline material loaded on a nitrogen-doped porous carbon (NPC) substrate, namely MoC/NPC, in which the confinement effect of carbon on MoC nanocrystals could be optimized by controlling the ratio of carbon source to molybdenum source. Appropriate MoC nanocrystal diameter and NPC content were found to lead to the strongest adsorption for LiPSs and full exposure of sulfur-reactive active sites. This not only effectively suppresses the shuttle effect but also accelerates the reaction kinetics of Li2S deposition and nucleation. The optimum product, MoC/NPC-12, synthesized with a mass ratio of dicyandiamide (C source) to CdMoO4(Mo source) of 12, demonstrated excellent rate capability (634.4 mAh·g-1 at 4C), high discharge capacity (1 203.9 mAh·g-1 at 0.2C), and exceptional cycle stability (a capacity decay rate of only 0.093% per cycle during 400 cycles at 1C) when loaded with~1.2 mg·cm-2 sulfur. And despite a further increment of sulfur loading to 3.8 mg·cm-2, an initial areal capacity of MoC/NPC-12@S of 4.7 mAh·cm-2 could still be achieved. This work provides valuable insights for the rational design and optimization of catalyst host materials in lithium-sulfur batteries.
Key words:  lithium-sulfur batteries    molybdenum carbide    nitrogen-doped porous carbon    structural optimization    catalytic conversion    polysulfide adsorption
出版日期:  2025-03-25      发布日期:  2025-03-24
ZTFLH:  O646  
基金资助: 广东省基础与应用基础研究基金(2023B1515040011);国家重点研发计划(2022YFB2502003)
通讯作者:  *杨黎春,华南理工大学材料科学与工程学院教授、博士研究生导师。主要从事电化学能量存储与转化研究,包括锂离子电池、锌离子电池关键材料及电催化剂。mslcyang@scut.edu.cn   
作者简介:  张怿炜,现为华南理工大学材料科学与工程学院硕士研究生,主要研究领域为锂硫电池正极载体材料。
引用本文:    
张怿炜, 胡仁宗, 欧阳柳章, 刘军, 杨黎春, 朱敏. MoC纳米晶/掺氮多孔碳的结构调控及在锂硫电池中的性能优化[J]. 材料导报, 2025, 39(6): 24050008-6.
ZHANG Yiwei, HU Renzong, OUYANG Liuzhang, LIU Jun, YANG Lichun, ZHU Min. Structural Optimization of MoC Nanocrystals/Nitrogen-doped Porous Carbon for Enhanced Performance in Lithium-Sulfur Batteries. Materials Reports, 2025, 39(6): 24050008-6.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24050008  或          https://www.mater-rep.com/CN/Y2025/V39/I6/24050008
1 Raza H, Bai S, Cheng J, et al. Electrochemical Energy Reviews, 2023, 6(1), 29.
2 Manthiram A, Chung S H, Zu C. Advanced Materials, 2015, 27(12), 1980.
3 Manthiram A, Fu Y, Su Y S. Accounts of Chemical Research, 2013, 46(5), 1125.
4 Yin Y X, Xin S, Guo Y G, et al. Angewandte Chemie International Edition, 2013, 52(50), 13186.
5 Peng H J, Huang J Q, Cheng X B, et al. Advanced Energy Materials, 2017, 7(24), 1700260.
6 Xu R, Lu J, Amine K. Advanced Energy Materials, 2015, 5(16), 1500408.
7 Liu F, Sun G, Wu H B, et al. Nature Communications, 2020, 11(1), 5215.
8 Qin B, Cai Y, Si X, et al. ACS Applied Materials & Interfaces, 2021, 13(33), 39424.
9 Zhong Y, Xia X, Shi F, et al. Advanced Science, 2016, 3(5), 1500286.
10 He K, Campbell E, Huang Z, et al. Small Structures, 2022, 3(12), 2200104.
11 Dong S M, Chen X, Zhang X Y, et al. Coordination Chemistry Reviews, 2013, 257(13-14), 1946.
12 Deng W, Xu Z, Deng Z, et al. Journal of Materials Chemistry A, 2021, 9(38), 21760.
13 He M, Li X, Li W, et al. Chemical Engineering Journal, 2021, 411, 128563.
14 Jiang N, Jiang G, Niu D, et al. Journal of Energy Chemistry, 2020, 51, 207.
15 Qin B, Cai Y, Wang P, et al. Energy Storage Materials, 2022, 47, 345.
16 Dinh K N, Liang Q H, Du C F, et al. Nano Today, 2019, 25, 99.
17 Xiao Y, Hwang J Y, Sun Y K. Journal of Materials Chemistry A, 2016, 4(27), 10379.
18 Jin W, Maduraiveeran G. Materials Today Energy, 2019, 13, 64.
19 Xing Y, Yang Y, Chen R J, et al. Small, 2018, 14(19), 1704366.
20 Xu S S, Wang M Z, Saranya G, et al. Applied Catalysis B:Environment and Energy, 2020, 268, 118385.
21 Chen G, Li Y, Zhong W, et al. Energy Storage Materials, 2020, 25, 547.
22 Qian X, Cheng J, Jin L, et al. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2023, 668, 131442.
23 Zhang C, Biendicho J J, Zhang T, et al. Advanced Functional Materials, 2019, 29(34), 1903842.
24 Wang R, Yang J, Chen X, et al. Advanced Energy Materials, 2020, 10(9), 1903550.
25 Yao Y, Wang H, Yang H, et al. Advanced Materials, 2020, 32(6), 1905658.
[1] 邓开鑫, 刘澄虎, 于志庆, 黄文斌, 魏强, 周亚松. 碳化钼的结构、制备及应用研究进展[J]. 材料导报, 2024, 38(5): 22080058-18.
[2] 牛冬瑜, 黄山, 师伟博, 谢希望, 汪严, 高仰明. 粗集料接触配位参数影响下沥青混合料的抗断裂特性研究[J]. 材料导报, 2024, 38(23): 23050048-10.
[3] 葛世伟, 赵倩, 刘玉, 刘耀阳, 韦楚. 层状双羟基氢氧化物及其衍生物在锂硫电池中的应用[J]. 材料导报, 2024, 38(20): 23070107-10.
[4] 康小雅, 何天启, 朱福良, 冉奋. 蜂窝状多孔碳材料装载硫单质及其在锂硫电池中的储能性能研究[J]. 材料导报, 2024, 38(16): 23010004-6.
[5] 姜宇, 杨蓉, 张乾伟, 樊潮江, 董鑫, 蒋百铃, 燕映霖. 功能化MXene在锂硫电池中应用研究进展[J]. 材料导报, 2024, 38(12): 22100251-9.
[6] 黄少炎, 修慧娟, 王志雄, 樊莎, 王思敏, 邓自立, 李娜, 李金宝. 纳米纤维素基复合材料在锂硫电池中的应用研究进展[J]. 材料导报, 2024, 38(12): 22120181-6.
[7] 周宇祥, 施天宇, 赵晨媛, 尹海宏, 宋长青, 郁可. 聚苯胺包覆的硫化锌-碳纳米管用作正极载体材料提高锂硫电池性能[J]. 材料导报, 2024, 38(1): 22060085-7.
[8] 罗重阳, 李宇杰, 王丹琴, 刘双科, 陈宇方, 郑春满. 改性电解液促进均匀锂沉积的研究进展[J]. 材料导报, 2023, 37(6): 21070209-11.
[9] 崔春娟, 赵亚男, 刘跃, 武重洋, 张凯, 王妍, 魏剑. 花瓣状纳米硫和球状纳米硫的制备及性能[J]. 材料导报, 2023, 37(5): 21080095-11.
[10] 宋丽红, 张敏刚, 曹翔宇, 郭锦, 闫晓燕. S-N掺杂聚乙二醇用于锂硫电池的第一性原理研究[J]. 材料导报, 2023, 37(3): 21030173-5.
[11] 赵文文, 王韵芳, 段东红, 刘世斌, 周娴娴, 陈良. 金属有机骨架衍生的层状Co3O4/C在锂硫电池中的应用[J]. 材料导报, 2022, 36(6): 20120257-7.
[12] 魏士俊, 何润合, 李永兵, 靳艳梅, 张兴祥. 聚丙烯腈分子量对锂硫电池比容量和循环稳定性的影响[J]. 材料导报, 2022, 36(22): 21080285-6.
[13] 胡坤, 郭锦, 张敏刚, 连晋毅, 张怡轩, 李占龙. 金属化合物在锂硫电池正极材料及夹层中的应用[J]. 材料导报, 2022, 36(19): 21010010-11.
[14] 张苗, 魏志祥, 常晶晶. 柔性锂硫电池电极材料的结构设计[J]. 材料导报, 2022, 36(11): 21010030-11.
[15] 冯阳, 汪港, 陈君妍, 康卫民, 邓南平, 程博闻. 高性能锂硫电池研究进展与改进策略[J]. 材料导报, 2022, 36(11): 20080027-14.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed