Please wait a minute...
材料导报  2025, Vol. 39 Issue (6): 24010096-17    https://doi.org/10.11896/cldb.24010096
  无机非金属及其复合材料 |
增强钛酸铋钠基陶瓷储能研究进展
周乃吉, 吴修胜*, 温红娟, 施思嘉, 曹菊芳
安徽建筑大学材料与化学工程学院,合肥 230009
Research Progress on Improvingthe Energy Storage of Bismuth Sodium Titanate Based Ceramics
ZHOU Naiji, WU Xiusheng*, WEN Hongjuan, SHI Sijia, CAO Jufang
School of Materials and Chemical Engineering, Anhui Jianzhu University, Hefei 230009, China
下载:  全 文 ( PDF ) ( 75905KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 陶瓷电容器由于较高的能量储存密度、高的大功率充放电速率和较低的成本等优势,在脉冲功率技术储能系统方面具有应用潜力,得到广泛研究。含铅陶瓷电容器虽然表现出优异的性能,但铅元素对环境和人类健康有着潜在的危害,因此开发无铅电介质电容器成为当前的研究重点。钛酸铋钠(BNT)由于具有较高的极化能力,在众多无铅电介质储能材料中脱颖而出。然而由于其内部电畴尺寸较大,畴与畴之间相互作用力较强,在撤去电场后,电畴无法迅速复原,导致其剩余极化较大;再者,BNT陶瓷击穿场强较低,并且在制备的过程中Bi3+和Na+挥发导致微观结构和组成成分上的不均性,这些都影响了材料的储能性能。本文针对BNT陶瓷的上述问题,从增强弛豫效果、提升击穿场强、调控相组成、采取缺陷工程策略和设计多层化结构五个方面综述了近年来提升BNT陶瓷储能性能的方法,并对这些方法进行综合分析,为改性BNT基储能陶瓷提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
周乃吉
吴修胜
温红娟
施思嘉
曹菊芳
关键词:  电介质电容器  钛酸铋钠  弛豫铁电  缺陷工程  储能    
Abstract: Ceramic capacitors have been widely studied due to their advantages such as high energy storage density, fast high-power charging and discharging rates, and low cost, making them have potential applications in pulse power technology energy storage systems. Although lead-containing ceramic capacitors exhibit excellent performance, lead has potential hazards to the environment and human health. Therefore, the development of lead-free dielectric capacitors has become a focus of material research in this field. Sodium bismuth titanate (BNT) stands out among many lead-free dielectric energy storage materials due to its high polarization ability. However, due to the large internal domain size and strong interaction forces between domains, after removing the electric field, the domains cannot quickly recover, resulting in a large residual polarization. In addition, the low breakdown field strength of BNT ceramics and the volatilization of Bi3+ and Na+ during the preparation process lead to heterogeneity in microstructure and composition, all of which affect the energy storage performance of the material. This article reviews the methods for improving the energy storage performance of BNT ceramics in recent years from five aspects:enhancing relaxation effect, improving breakdown field strength, regulating phase composition, adopting defect engineering strategy, and designing multi-layer structure. These methods are comprehensively analyzed, with useful information providedfor the modification of BNT-based energy storage ceramics.
Key words:  dielectric capacitor    bismuth sodium titanate    relaxor ferroelectricity    defect engineering    energy storage
出版日期:  2025-03-25      发布日期:  2025-03-24
ZTFLH:  TQ174.1  
基金资助: 安徽省高校协同创新项目(GXXT-2022-010);科技部重点研发项目课题(2019YFE03070001)
通讯作者:  *吴修胜,安徽建筑大学材料与化学工程学院、硕士研究生导师。目前主要从事微波电介质材料、陶瓷电介质储能材料等方面的研究工作。wxswjf@126.com   
作者简介:  周乃吉,安徽建筑大学材料与化学工程学院硕士研究生,在吴修胜教授的指导下进行研究。目前主要研究领域为陶瓷电介质储能材料。
引用本文:    
周乃吉, 吴修胜, 温红娟, 施思嘉, 曹菊芳. 增强钛酸铋钠基陶瓷储能研究进展[J]. 材料导报, 2025, 39(6): 24010096-17.
ZHOU Naiji, WU Xiusheng, WEN Hongjuan, SHI Sijia, CAO Jufang. Research Progress on Improvingthe Energy Storage of Bismuth Sodium Titanate Based Ceramics. Materials Reports, 2025, 39(6): 24010096-17.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24010096  或          https://www.mater-rep.com/CN/Y2025/V39/I6/24010096
1 Shi P, Zhu X P, Lou X J, et al. Chemical Engineering Journal, 2022, 428, 132612.
2 Xu C H. Design of antiferroelectric ceramics for pulse capacitors and research on their charging and discharging behavior. Ph. D. Thesis, University of Chinese Academy of Sciences (Chinese Academy of Sciences Shanghai Silicate Research Institute), China, 2018(in Chinese).
徐晨洪. 脉冲电容器用反铁电陶瓷设计及其充放电行为研究. 博士学位论文, 中国科学院大学(中国科学院上海硅酸盐研究所), 2018.
3 Song S Y, Liu J S, Wang H C , et al. Journal of Alloys and Compounds, 2023, 966, 171602.
4 Qin X F. Optimization of energy storage characteristics of PZT based SiO2 composite ceramics applied to pulse power technology. Master's Thesis, Chongqing University of Science and Technology, China, 2012 (in Chinese).
秦晓凤. 应用于脉冲功率技术的PZT基SiO2复合陶瓷储能特性优化. 硕士学位论文, 重庆科技学院, 2021.
5 Li H, Lv F, Lin F C, et al. Intense Laser and Particle Beams, 2012, 24(3), 554(in Chinese).
李化, 吕霏, 林福昌等. 强激光与粒子束, 2012, 24(3), 554.
6 Wang Q F. Exploration and research on compact repetitive frequency pulse power source. Ph. D. Thesis, Southwest Jiaotong University, China, 2011(in Chinese).
王庆峰. 紧凑型重复频率脉冲功率源的探索研究. 博士学位论文, 西南交通大学, 2011.
7 Wang Y. Electrical Technology, 2009(4), 5(in Chinese).
王莹. 电气技术, 2009(4), 5.
8 Zheng J Y, He W. Mechanical and Electrical Engineering, 2008(4), 1(in Chinese).
郑建毅, 何闻. 机电工程, 2008(4), 1.
9 Zhu X G. Research on IGBT series parallel technology in pulse power systems. Master's Thesis, Southwest Jiaotong University, China, 2020 (in Chinese).
朱晓光. 脉冲功率系统中IGBT串并联技术研究. 硕士学位论文, 西南交通大学, 2020.
10 Wu J G, Zheng T. Electronic ceramic materials and devices, Chemical Industry Press, China, 2022, pp. 161(in Chinese).
吴家刚, 郑婷. 电子陶瓷材料与器件, 化学工业出版社, 2022, pp. 161.
11 Jiang W H. Intense Laser and Particle Beam, 2013, 25(3), 537 (in Chinese).
江伟华. 强激光与粒子束, 2013, 25(3), 537.
12 Jiang Z H. Energy storage mechanism and performance study of bismuth sodium titanate based relaxor ferroelectric ceramic materials. Ph. D. Thesis, University of Electronic Science and Technology of China, China, 2022 (in Chinese).
蒋泽华. 钛酸铋钠基弛豫铁电陶瓷材料的储能机理及性能研究. 博士学位论文, 电子科技大学, 2022.
13 Wang Y. High power pulse power supply, Atomic Energy Press, China, 1991, pp. 159(in Chinese).
王莹. 高功率脉冲电源, 原子能出版社, 1991, pp. 159.
14 Mahmoud M, Ramadan M, Olabi A G, et al. Energy Conversion and Management, 2020, 210, 112670.
15 Li R M. Chinese Science and Technology Information, 2006(7), 290 (in Chinese).
李锐敏. 中国科技信息, 2006 (7), 290.
16 Mcnab I R. IEEE Transactions on Magnetics, 2001, 37(1), 375.
17 Li L S, Fan P Y, Wang M Q, et al. Journal of Physics D-Applied Physics, 2021, 54(29), 3001.
18 Zhao P Y, Zhu C Q, Li L T, et al. Journal of Advanced Ceramics, 2021, 10(6), 1153.
19 Yang L T, Kong X, Li F, et al. Progress in Materials Science, 2019, 102, 72.
20 Guo F, Shi Z F, Yang B, et al. Scripta Materialia, 2020, 184, 52.
21 Chen J Y, Tang Z H, Yang B, et al. Journal of Materials Chemistry A, 2020, 8(16), 8010.
22 Shao T Q, Du H L, Ma H, et al. Journal of Materials Chemistry A, 2017, 5, 554.
23 Chen S, Skordos A, Thakur VK. Materials Today Chemistry, 2020, 17, 100304.
24 Zou K L, Dan Y, Xu H J, et al. Materials Research Bulletin, 2019, 113, 190.
25 Hao X H. Journal of Advanced Dielectrics, 2013, 3(1), 1330001.
26 Palneedi H, Peddigari M, Hwang G T, et al. Advanced Functional Materials, 2018, 28(42), 1803665.
27 Hu X P, Yi K W, Liu J, et al. Energy Technology, 2018, 6(5), 849.
28 Li F. Study on electric card effect and energy storage characteristics of bismuth based perovskite lead-free relaxor ferroelectric ceramics. Ph. D. Thesis, University of the Chinese Academy of Sciences (Chinese Academy of Sciences Shanghai Institute of Silicate), China, 2019 (in Chinese).
李峰. 铋基钙钛矿无铅弛豫铁电陶瓷的电卡效应与储能特性研究. 博士学位论文, 中国科学院大学(中国科学院上海硅酸盐研究所), 2019.
29 Zhang R, Wang P B, Guo Q H, et al. Ceramics International, 2023, 49(19), 31582.
30 Wang Z X, Wang C, Jiao X F, et al. Microelectronics and Nanoelectronics Technology, 2023, 60(4), 633(in Chinese).
王朝霞, 王超, 焦晓飞, 等. 微纳电子技术, 2023, 60(4), 633.
31 Qi J L, Zhang M H, Chen Y Y, et al. Cell Reports Physical Science, 2022, 3(11), 101110.
32 Jin L, Li F, Zhang S J. Journal of the American Ceramic Society, 2014, 97(1), 1.
33 Acosta M, Novak N, Rojas V, et al. Applied Physics Reviews, 2017, 4(4), 041305.
34 Liu N T, Liang R H, Zhou Z Y, et al. Journal of Materials Chemistry C, 2018, 6, 10211.
35 Pan Z B, Wang P, Hou X, et al. Advanced Energy Materials, 2020, 10(31), 2001536.
36 Li F, Zhang S J, Damjanovic D, et al. Advanced Functional Materials, 2018, 28(37), 1801504.
37 Tian T F, Chen F L, Zhang L B, et al. Modern Technology Ceramics, 2023, 44 (3), 153 (in Chinese).
田婷芳, 陈飞龙, 张良斌等. 现代技术陶瓷, 2023, 44(3), 153.
38 Qiao Y L, Li W L, Zhao Y, et al. ACS Applied Energy Materials, 2018, 1(3), 956.
39 Jin Q, Song E P, Cai K, et al. Journal of Electronic Materials, 2022, 51(9), 51885204.
40 Su Q. Preparation and energy storage behavior of rare earth doped bismuth sodium titanate based relaxing ferroelectric ceramics. Master's Thesis, Inner Mongolia University of Science and Technology, China, 2023(in Chinese).
苏乾. 稀土掺杂钛酸铋钠基弛豫铁电陶瓷制备与储能行为. 硕士学位论文, 内蒙古科技大学, 2023.
41 Gao F, Dong X L, Mao C L, et al. Journal of the American Ceramic Society, 2011, 94, 4162.
42 Li Q, Wang C, Zhang W, et al. Journal of Materials Science, 2019, 54(6), 4523.
43 Gao F, Dong X L, Mao C L, et al. Journal of the American Ceramic Society, 2011, 94, 4382.
44 Chen L. Design and mechanism of high-performance lead-free relaxor ferroelectric energy storage ceramics. Ph. D. Thesis, Beijing University of Science and Technology, China, 2023(in Chinese).
陈良. 高性能无铅弛豫铁电储能陶瓷的设计及机理. 博士学位论文, 北京科技大学, 2023.
45 Ji H F, Wang D W, Bao W C, et al. Energy Storage Materials, 2021, 38, 113.
46 Yang H B, Tian J H, Lin Y, et al. Chemical Engineering Journal, 2021, 418, 129337.
47 Yang L, Kong X, Li F, et al. Progress in Materials Science, 2019, 102, 72.
48 Du J S, Tang B H, Liu W, et al. Journal of Advanced Ceramics, 2020, 9(2), 173.
49 Zhang C, Chen Y, Zhou M X, et al. Journal of Materials Chemistry C, 2019, 7(26), 8120.
50 Huang Y, Wu Y, Liu B, et al. Journal of Materials Chemistry A, 2018, 6(10), 4477.
51 Li D, Lin Y, Zhang M, et al. Chemical Engineering Journal, 2019, 392, 123729.
52 Lin Q Z, Li L G, Dou W S, et al. Ceramics International, 2023, 49(10), 16225.
53 Yao Z, Song Z, Hao H, et al. Advanced Materials, 2017, 29(20), 1601727.
54 Chu B K, Hao J G, Li P, et al. ACS Applied Materials & Interfaces, 2022 , 14 (17), 19683.
55 Ding J X, Liu Y F, Lu Y N, et al. Materials Letters, 2014, 114, 107.
56 Tang L M, Pan Z B, Zhao J H, et al. Journal of Alloys and Compounds, 2023, 935, 168124.
57 Wang M, Feng Q, Luo C Y, et al. ACS Applied Materials & Interfaces, 2021, 13, 51218.
58 Li A Q, Wu J G, Qiao S, et al. Physica Status Solidi A, 2012, 209, 1213.
59 Yang H, Cai Z M, Zhu C Q, et al. ACS Sustainable Chemistry & Engineering,2022, 10, 9176.
60 Zhu C Q, Cai Z M, Luo B C, et al. ACS Applied Material & Interfaces, 2021, 13, 28484.
61 Chen Y H, Wang Y S, Zhao D E, et al. Materials Chemistry and Physics, 2022, 126542.
62 Zhao H Y, Cao W J, Liang C, et al. Chemical Engineering Journal, 2023, 471, 144702.
63 AkioS and Takahiro W. Japanese Journal of Applied Physics, 2004, 43, 6793.
64 Cen Z Y. Structure and properties of potassium sodium niobate based lead-free piezoelectric ceramics sintered under different atmospheres. Ph. D. Thesis, Tsinghua University, China, 2021 (in Chinese).
岑侦勇. 不同气氛烧结铌酸钾钠基无铅压电陶瓷的结构与性能. 博士学位论文, 清华大学, 2021.
65 Duke P C S, Ainara A, Stephen J S. Improvement of ionic conductivity in A-site lithium doped sodium bismuth titanate. Ph. D. Thesis, Imperial College London, UK, 2018.
66 Kang W S, Zheng Z S, Li Y L, et al. Ceramics International, 2020, 46, 24091.
67 Cao W P, Tu J B, Lin Q R, et al. Materials in Electronics, 2023, 34, 928.
68 Bai Q Z, Ma J, Wu W J, et al. Ceramics International, 2020, 46, 17691.
69 Serralta-Macias J J, Calderón-Piñar F, García-Zaldivar O, et al. Aip Advances, 2021, 11, 065020.
70 Yang F, Li M, Li L, et al. Journal of Materials Chemistry A, 2018, 6, 5243.
71 Singh A, Chatterjee R, Gupta V. Materials Chemistry and Physics , 2021, 265, 124483.
72 Liu X, Zhao Y X, Hu H C, et al. Lonics, 2019, 25, 2729.
73 Dou R P, Lu X P, Yang L, et al. Journal of Inorganic Materials, 2018, 33, 5.
74 Xie Y J, Hao H, Huang Z T, et al. Journal of Alloys and Compounds, 2021, 884, 161031.
75 Zhao Y Y, Xu J W, Zhou C R, et al. Ceramics International, 2016, 42, 2221.
76 Jin L, Huang Y Y, Pang J, et al. Ceramics International, 2020, 46, 22889.
77 Ye W H, Yan B, Ma J X, et al. Journal of The American Ceramic Society, 2023, 106, 11, 6858.
78 Zuo R Z, Ye C, Fang X S, et al. Journal of the European Ceramic Society, 2008, 28, 871.
79 Zuo R Z, Wang H Q, Ma B, et al. Journal of Materials Science:Materials in Electronics, 2009, 20, 1140.
80 Liu Y, Li Y L, Zheng Z S, et al. Ceramics International, 2021, 47, 4933.
81 Zhang J T, Lin Y, Wang L, et al. Journal of the European Ceramic Society, 2020, 40, 5458.
82 Li X H, Yang H, Zhu C Q, et al. Ceramics International, 2024, 50, 1438.
83 Li H H, Yang F, Chen X Q, et al. Ceramics International, 2023, 49, 39559.
84 Chen L, Li F, Gao B T, et al. Chemical Engineering Journal, 2023, 452, 139222.
85 Ren P R, Zhao H, Wang X, et al. Journal of Materiomics, 2023, 9(3), 482.
86 Tang L M, Yu Z Y, Pan Z B, et al. Small, 2023, 19, 2302346.
87 Li D, Zhou D, Wang D, et al. Small, 2022, 19, 2206958.
88 Hu Y C, Dang S T, Cao J Q, et al. Solid State Communications, 2023, 362, 115100.
89 Zhao P Y, Cai Z M, Wu L W, et al. Journal of Advanced Ceramics, 2021, 10(6), 1153.
90 Laadjal K, Cardoso A J M. Electronics, 2023, 12(6), 12061297.
91 Ren P R, He J J, Yan F X, et al. Journal of Alloys and Compounds, 2019, 807, 151676.
92 Zhao P Y, Chen L L, Li L T, et al. Journal of Materials Chemistry A, 2021, 9, 25914.
93 Cai Z M, Zhu C Q, Wang H X, et al. Journal of Materials Chemistry A, 2019, 7, 14575.
[1] 李广, 付一川, 余海存, 杨鹏辉, 魏莹, 喇培清, 顾玉芬. 光热发电储能熔盐研究进展[J]. 材料导报, 2025, 39(4): 24010158-10.
[2] 井文昌, 张志鸿, 刘香琛, 吴云翼, 李宝让. 新型液态金属电池材料体系及其相关技术的研究与进展[J]. 材料导报, 2025, 39(1): 23090098-17.
[3] 钮政, 罗希, 徐能能, 陈刚, 乔锦丽. 聚乙烯醇基凝胶电解质的制备及在储能器件中的应用[J]. 材料导报, 2024, 38(8): 23040146-11.
[4] 张霞, 吴瑛, 袁牧锋, 王春栋. MOFs衍生物在尿素氧化中的研究进展[J]. 材料导报, 2024, 38(6): 23020193-10.
[5] 董舵, 肖逸, 邢佳颖, 原奇鑫. 煤衍生多孔碳改性调控及其在储能领域应用[J]. 材料导报, 2024, 38(24): 23110053-16.
[6] 王培远, 邓根成, 朱登贵, 李永浩, 孙淑敏, 方少明. 高熵材料在锂/钠离子电池中的应用研究进展[J]. 材料导报, 2024, 38(22): 23040299-8.
[7] 师楷雁, 白杰, 孙炜岩. 碳基电极材料的改性方法与应用进展[J]. 材料导报, 2024, 38(22): 23080167-9.
[8] 孟令欣, 邓伟, 胡思远, 冯嘉唯, 王照盼. Al2O3/PEI复合介质的高温储能特性研究[J]. 材料导报, 2024, 38(22): 23110021-8.
[9] 张静, 高陈陈, 吴明明, 陈诚. 微/纳米级有机空心粒子构造及功能应用研究进展[J]. 材料导报, 2024, 38(21): 23040199-11.
[10] 陈翠翠, 张倩倩, 杨勇, 舒鑫, 冉千平. 低水胶比水泥浆体静动态流变行为的经时变化[J]. 材料导报, 2024, 38(15): 23040237-5.
[11] 郝璐, 于德梅. 聚吡咯纳米复合材料的研究进展[J]. 材料导报, 2023, 37(9): 21110151-10.
[12] 楚丙凯, 刘璐璐, 郝继功, 李伟, 曾华荣. BNT基铁电陶瓷的温度诱导高电致应变响应及其机理研究[J]. 材料导报, 2023, 37(7): 21100234-6.
[13] 周创, 蔡苇, 陈大凯, 杨蕊如, 章恒, 陈刚. Tm3+对AgNbO3反铁电陶瓷微结构和储能性能的影响[J]. 材料导报, 2023, 37(6): 21090143-6.
[14] 尹青, 杨姝涵, 宋挚豪, 赵泽羽, 李泳志, 赵丹阳, 戚继球, 隋艳伟. 米粒型氯插层NiFe层状双金属氢氧化物作为新概念氯离子电池正极材料[J]. 材料导报, 2023, 37(21): 23070158-8.
[15] 贾少培, 宗泳吉, 黄权, 李其松, 张茜, 李彩玉, 王志新, 穆云超. 蛋白质衍生氮掺杂碳用作电化学能源材料的研究进展[J]. 材料导报, 2023, 37(15): 21100210-14.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed