Please wait a minute...
材料导报  2025, Vol. 39 Issue (5): 24020073-6    https://doi.org/10.11896/cldb.24020073
  无机非金属及其复合材料 |
基于CT和NMR技术的UHPC孔隙结构研究
王张翔1, 金浪2, 陈培鑫3, 陈飞翔2, 姚天豫1, 陈徐东1,*
1 河海大学土木与交通学院,南京 210098
2 中交第二航务工程局有限公司,武汉 430040
3 中铁十四局集团有限公司,济南 250101
Study on Pore Structure of UHPC Based on CT and NMR Techniques
WANG Zhangxiang1, JIN Lang2, CHEN Peixin3, CHEN Feixiang2, YAO Tianyu1, CHEN Xudong1,*
1 School of Civil Engineering and Transportation, Hohai University, Nanjing 210098, China
2 CCCC Second Harbor Engineering Company Ltd., Wuhan 430040, China
3 China Railway 14th Bureau Group Corporation Limited, Jinan 250101, China
下载:  全 文 ( PDF ) ( 8604KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为研究喷射工艺对超高性能混凝土(UHPC)内部孔隙结构的影响,设计了喷射和模筑两种构筑方式的UHPC,利用CT扫描技术进行图像三维重建可视化分析,通过分水岭算法和搜索锥算法建立孔隙网络模型和纤维分布模型,分析了喷射UHPC内部孔隙均匀性分布、微米级孔径分布和纤维分布;借助核磁共振(NMR)技术,通过T2图谱孔径转换,从更为细观的层次研究了喷射UHPC内部的孔径分布情况,并将试验结果与CT扫描结果进行对比分析。结果表明,两种浇筑方式的UHPC内部均以不连通孔隙为主,喷射UHPC内部孔隙均匀性分布有一定降低,其内部的孔径分布趋向于小而密;喷射回弹会造成UHPC内部不同程度的孔隙率增加,其中约1.5%为无害孔,仅约0.2%为有害的非毛细孔;喷射工艺对UHPC内部纤维分布也有影响,喷射UHPC内部纤维绕Z轴(喷射方向)分布得更加均匀,且趋向平行于受喷面呈二维乱象分布。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王张翔
金浪
陈培鑫
陈飞翔
姚天豫
陈徐东
关键词:  喷射UHPC  CT  核磁共振  孔径分布  纤维分布  孔隙均匀性    
Abstract: In order to study the effect of spraying process on the pore structure of ultra-high performance concrete (UHPC), the UHPC with two construction modes of spraying and molding was designed. The uniformity of the pore distribution, micrometer-level pore size distribution and fiber distribution in sprayed UHPC were analyzed through three-dimensional reconstruction and visualization analysis of images used computerized tomography (CT), and the pore network model and fiber distribution model constructed by means of the watershed algorithm and search-cone algorithm, respectively. Furthermore, nuclear magnetic resonance (NMR) technology was employed to study the pore size distribution of sprayed UHPC at a finer scale, and the T2 spectrum was used to obtain the pore size distribution. The results show that both molding and spraying UHPC have a main distribution of non-connected pores. The uniformity of the pore distribution in sprayed UHPC decreases, and its pore size distribution tends to be small and dense. Spraying rebound causes different degrees of increase in the porosity of UHPC, among which about 1.5% are harmless pores and only about 0.2% are non-capillary harmful pores. The spraying process also affects the fiber distribution in UHPC, and the fibers in sprayed UHPC distribute more evenly along the Z-axis (the spraying direction), and tend to be parallel to the sprayed surface in a two-dimensional chaotic distribution.
Key words:  sprayed UHPC    CT    nuclear magnetic resonance    pore size distribution    fiber distribution    pore uniformity
出版日期:  2025-03-10      发布日期:  2025-03-18
ZTFLH:  TU528.53  
基金资助: 国家自然科学基金(52379124);国家重点研发计划(2021YFB2600200)
通讯作者:  *陈徐东,河海大学土木与交通学院教授、博士研究生导师。目前主要从事混凝土性能调控及静动力特性等方面的研究工作。cxdong1985@163.com   
作者简介:  王张翔,河海大学土木与交通学院博士研究生,在陈徐东教授的指导下进行研究。目前主要研究领域为混凝土性能调控与承载机制。
引用本文:    
王张翔, 金浪, 陈培鑫, 陈飞翔, 姚天豫, 陈徐东. 基于CT和NMR技术的UHPC孔隙结构研究[J]. 材料导报, 2025, 39(5): 24020073-6.
WANG Zhangxiang, JIN Lang, CHEN Peixin, CHEN Feixiang, YAO Tianyu, CHEN Xudong. Study on Pore Structure of UHPC Based on CT and NMR Techniques. Materials Reports, 2025, 39(5): 24020073-6.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24020073  或          https://www.mater-rep.com/CN/Y2025/V39/I5/24020073
1 Shao X D, Qiu M H, Yan B F, et al. Materials Reports, 2017, 31(23), 33 (in Chinese).
邵旭东, 邱明红, 晏班夫, 等. 材料导报, 2017, 31(23), 33.
2 Shang T P. China Concrete and Cement Products, 2023(8), 1 (in Chinese).
商涛平. 混凝土与水泥制品, 2023(8), 1.
3 Zhang Longfei, Xie Hao, Feng Jili. Construction and Building Materials, 2022, 353, 129133.
4 Jiang Zhen,Cai Guojun, Tian Guanglin, et al. Construction and Building Materials, 2022, 352, 128988.
5 Ross D J, Bustin R M. Marine and Petroleum Geology, 2009, 26(6), 916.
6 Wang Xianfeng, Chen Zhenpeng, Ren Jun, et al. Cement and Concrete Composites, 2022, 125, 104294.
7 Zhao J P, Cui L K, Chen H, et al. Geoscience, 2020, 34(6), 1205 (in Chinese).
赵建鹏, 崔利凯, 陈惠, 等. 现代地质, 2020, 34(6), 1205.
8 Chen F B, Xu B, Jiao H Z, et al. Journal of China University of Mining & Technology, 2021, 50(2), 273 (in Chinese).
陈峰宾, 许斌, 焦华喆, 等. 中国矿业大学学报, 2021, 50(2), 273.
9 Pan G, Li C K, Jakub L, et al. Journal of Shandong University of Science and Technology (Natural Science), 2023, 42 (5), 40(in Chinese).
潘刚, 李春岿, 雅各布·拉日诺夫斯基, 等. 山东科技大学学报(自然科学版), 2023, 42 (5), 40.
10 Chen K F, Qiao H X, Wang P H, et al. Journal of Huazhong University of Science and Technology(Natural Science Edition), 2020, 48(7), 88 (in Chinese).
陈克凡, 乔宏霞, 王鹏辉, 等. 华中科技大学学报(自然科学版), 2020, 48(7), 88.
11 Deng X H, Gao X Y, Wang R, et al. Materials Reports, 2021, 35(16), 16028 (in Chinese).
邓祥辉, 高晓悦, 王睿, 等. 材料导报, 2021, 35(16), 16028.
12 Zhou K P, Li J L, Xu Y J, et al. Journal of Central South University (Science and Technology), 2012, 43(12), 4796(in Chinese).
周科平, 李杰林, 许玉娟, 等. 中南大学学报(自然科学版), 2012, 43(12), 4796.
13 Jiao H Z, Han Z Y, Chen X M, et al. Journal of China Coal Society, 2019, 44(10), 2990(in Chinese).
焦华喆, 韩振宇, 陈新明, 等. 煤炭学报, 2019, 44(10), 2990.
14 Geng C, Yang Y F, Gao Y, et al. Science Technology and Engineering, 2014, 14(2), 1(in Chinese).
耿冲, 杨永飞, 高莹, 等. 科学技术与工程, 2014, 14(2), 1.
15 Dai Z, Luo D H, Xie M Y, et al. China Offshore Oil and Gas, 2019, 31(2), 103 (in Chinese).
戴宗, 罗东红, 谢明英, 等. 中国海上油气, 2019, 31(2), 103.
16 Friesen W I, Laidlaw W G. Journal of Colloid and Interface Science, 1993, 160 (1), 226.
17 Li H B, Zhu J Y, Guo H K. Chinese Journal of Magnetic Resonance, 2008(2), 273 (in Chinese).
李海波, 朱巨义, 郭和坤. 波谱学杂志, 2008(2), 273.
18 Liu W, Xing L. Nuclear magnetic resonance logging, Petroleum Industry Press, China, 2011, pp.26 (in Chinese).
刘卫, 邢立. 核磁共振录井, 石油工业出版社, 2011, pp.26.
19 Kumar R, Bhattacharjee B. Cement and Concrete Research, 2003, 33(3), 417.
[1] 田威, 郭健, 王文奎, 张景生, 王凯星. 高温后混凝土毛细吸水特性的核磁共振分析及其力学性能研究[J]. 材料导报, 2025, 39(3): 23070160-7.
[2] 吕晶, 赵欢, 张金翼, 席培峰. 冻融循环作用下不同含水率灰土的细微观结构与宏观力学性能[J]. 材料导报, 2024, 38(7): 22110321-7.
[3] 都思哲, 张淼, 张玉, Selyutina Nina, Smirnov Ivan, 马树娟, 董晓强, 刘元珍. 基于CT图像三维重建的高温下再生混凝土孔隙特征研究[J]. 材料导报, 2024, 38(5): 22060128-11.
[4] 陈文龙, 周旭东, 张宇, 张云升, 马智聪. 电化学除氯对钢筋腐蚀状态及其周围混凝土微观结构的影响[J]. 材料导报, 2024, 38(23): 23070258-8.
[5] 王习, 张云升, 张宇, 乔宏霞, 路承功, Hakuzweyezu Theogene, 刘志超, 李忠慧. CTF增效剂提升混凝土抗冻性能研究[J]. 材料导报, 2024, 38(19): 23030006-7.
[6] 陈润华, 戴永祺, 张建业, 李方德, 鲁艳军. 基于微流控芯片的新型冠状病毒检测研究进展[J]. 材料导报, 2024, 38(12): 23020006-12.
[7] 阳虎, 单丽岩, 李志伟. 基于CT图像的水泥稳定RAP材料细观结构研究[J]. 材料导报, 2024, 38(1): 22050037-6.
[8] 卢超, 曹建春, 陈伟, 刘星, 张永青, 阴树标. 再加热温度对Nb微合金化钢筋连续冷却相变及组织与性能的影响[J]. 材料导报, 2023, 37(8): 21100016-8.
[9] 刘雄飞, 和西民. 低应变率荷载作用下梯度泡沫铝力学性能研究[J]. 材料导报, 2023, 37(7): 22010266-7.
[10] 童钦, 霍冀川, 张行泉, 霍泳霖, 徐冲, 蒋勤, 宋巍伟. 模拟镧系元素固化的掺La2O3玄武岩玻璃的结构与性能研究[J]. 材料导报, 2023, 37(24): 21110089-5.
[11] 陈飞, 李先延, 高家贵, 王永俊, 张林艳, 封基良. 基于IDEAL-CT试验评价后掺法温拌环氧沥青混合料抗裂性能[J]. 材料导报, 2023, 37(20): 22040288-7.
[12] 韩照, 张云升, 乔宏霞, 冯琼, 薛翠真, 尚明刚. 基于CT扫描及图像处理技术的机制砂形貌研究[J]. 材料导报, 2023, 37(19): 22060032-6.
[13] 余春秀, 王云凯, 贺子娟, 李玮, 陈家林, 李世鸿, 李俊鹏. 电子封装用环氧胶粘剂改性研究进展[J]. 材料导报, 2023, 37(15): 21120084-10.
[14] 高红梅, 兰永伟, 郭楠. 温度作用后花岗岩微观孔隙结构和渗透率的研究[J]. 材料导报, 2023, 37(13): 21070003-6.
[15] 宋绍意, 黎学明, 杨文静, 何苗, 倪婕, 简燕, 曾旭钟. 可催化高氯酸钠热分解的三维微纳多孔铜的合成[J]. 材料导报, 2023, 37(12): 21080141-6.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed