Please wait a minute...
材料导报  2025, Vol. 39 Issue (4): 23110178-7    https://doi.org/10.11896/cldb.23110178
  金属与金属基复合材料 |
原子模拟研究铍$〈11\bar{2}0〉$对称倾侧晶界的能量与结构特性
王慧明1, 金剑锋1,*, 王东新2,*, 许德美3, 郭凯琪1, 杨培军1, 秦高梧1
1 东北大学材料科学与工程学院,沈阳 110819
2 西北稀有金属材料研究院宁夏有限公司,稀有金属特种材料国家重点实验室,宁夏 石嘴山 753000
3 北方民族大学材料科学与工程学院,银川 750030
Energetic and Structure Characteristics of the $〈11\bar{2}0〉$ Symmetric Tilt Grain Boundaries of Beryllium: Insight from Atomic Simulations
WANG Huiming1, JIN Jianfeng1,*, WANG Dongxin2,*, XU Demei3, GUO Kaiqi1, YANG Peijun1, QIN Gaowu1
1 School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
2 State Key Laboratory of Special Rare Metal Materials, Northwest Rare Metal Materials Research, Institute Ningxia Co., Ltd., Shizuishan 753000, Ningxia, China
3 School of Materials Science and Engineering, North Minzu University, Yinchuan 750030, China
下载:  全 文 ( PDF ) ( 34678KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 铍(Be)具有优异的物理、力学等性能,在航空航天、国防、核工业等关键领域发挥了非常重要的作用。但金属铍(α-Be)是密排六方结构晶体,其结构的各向异性对力学性能会产生显著的影响,限制了铍的应用。本研究首先构建出$〈11\bar{2}0〉$ 对称倾侧晶界(STGB)的原子模型,通过分子动力学方法模拟计算出不同倾侧角(2θ)的晶界能(ESTGB),并分析几种典型界面的原子结构,从而探索铍中倾侧晶界随θ角度变化的各向异性特点。研究发现:当θ在 0~90° 内变化时,根据晶界能的变化规律,可将θ划分为六个区域。对于小角度晶界区(0°<θ ≤ 15°),晶界能随 θ 的增加而增大。而对于大角度晶界(θ>15°),结果显示 $(10\bar{1}3)$ 、$(10\bar{1}2)$、$(10\bar{1}1)$孪晶及$(20\bar{2}1)$倾侧晶界对应的ESTGB 较低;晶界能最低点对应$(10\bar{1}3)$孪晶(θ =31.11°),其值为289 mJ/m2,其次是$(10\bar{1}1)$孪晶(θ =61.09°),为336 mJ/m2,然后是$(10\bar{1}2)$孪晶(θ=42.15°),为536 mJ/m2,最后是$(20\bar{2}1)$倾侧晶界(θ =74.56°),为582 mJ/m2。进一步分析界面原子结构发现,三种孪晶平面和$(20\bar{2}1)$晶界平面的原子结构和能量均呈周期性排布;当 θ 在这四个角度附近小幅变化时,界面的特征变化显著。最后,对比密排六方结构金属铍、镁、钛的$〈11\bar{2}0〉$对称倾侧晶界能量的模拟结果,发现其晶界能随 θ 变化的趋势相似,但铍对应的晶界能明显高于钛和镁。上述结果可为高效地开发铍及其合金提供理论参考和设计思路。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王慧明
金剑锋
王东新
许德美
郭凯琪
杨培军
秦高梧
关键词:  金属铍  分子动力学  对称倾侧晶界  晶界能  各向异性    
Abstract: Beryllium (Be) has many exceptional physical and mechanical properties and plays an irreplaceable key role in some special fields, such as aerospace, national defense and nuclear industries. However, the mechanical properties of α-Be are significantly affected by the anisotropic characteristic of its hexagonal close-packed (HCP) lattice structure, which limits its applications. In this study, molecular dynamics (MD) simulations are used to investigate the energetic and structure characteristics of the $〈11\bar{2}0〉$ symmetrical tilt grain boundary (STGB) in α-Be, in which the GB energy with the tilt angle (2θ) is calculated and the atomic structure at the interface is analyzed, and the anisotropy of the tilting grain boundary with the θ is examined. It is found that the θ can be divided into six regions based on the variation of the GB energy when it ranges from 0° to 90°. For low-angle STGBs (0°<θ ≤ 15°), the GB energy increases with the θ. However, for high-angle STGBs (θ>15°), the results demonstrate that the $(10\bar{1}3)$, $(10\bar{1}2)$, $(10\bar{1}1)$ twin boundaries, and the $(20\bar{2}1)$ tilt grain boundary correspond to the lower ESTGB. The $(10\bar{1}3)$ twin boundary (θ=31.11°) exhibits the lowest GB energy with the ESTGBof 289 mJ/m2, followed by the $(10\bar{1}1)$ twin boundary (θ=61.09°) with the ESTGBof 336 mJ/m2, the $(10\bar{1}2)$ twin boundary (θ=42.15°) with the ESTGBof 536mJ/m2, and finally the $(20\bar{2}1)$ tilt boundary (θ=74.56°) with the ESTGBof 582 mJ/m2. Further analysis of the atomic structure of these boundaries reveals that the atomic structures and energies of the three twin and $(20\bar{2}1)$ GB planes exhibit periodic arrangements. Slight changes in θ near these angles significantly alter the characteristics of the corresponding interface. Finally, when comparing the GB energy at the same $〈11\bar{2}0〉$ STGBs of HCP-Be, Mg and Ti, it is found that the trend of GB energy variation with the θ is similar. However, the ESTGB of Be is greater than that of Mg and Ti. These findings can provide guidance to design and develop beryllium and its alloys in an efficient way.
Key words:  beryllium    molecular dynamics    symmetric tilt grain boundary (STGB)    grain boundary energy    anisotropy
出版日期:  2025-02-25      发布日期:  2025-02-18
ZTFLH:  TB31  
基金资助: 西北稀有金属材料研究院宁夏有限公司稀有金属特种材料国家重点实验室开放课题基金(SKL2018K003)
通讯作者:  *金剑锋,副教授,东北大学材料科学与工程学院副教授,秦高梧教授团队。长期从事计算材料学、颗粒复合体显微组织设计等研究。jinjf@atm.neu.edu.cn
王东新,教授级高工,工学博士,博士研究生导师,稀有金属特种材料国家重点实验室主任。长期从事稀有金属冶炼、加工理论与技术研究。wangdongxin123@126.com   
作者简介:  王慧明,东北大学材料科学与工程学院硕士研究生(2021/09—2024/07),导师为金剑锋副教授,主要从事分子动力学模拟金属铍的晶界结构和力学性能等相关研究。
引用本文:    
王慧明, 金剑锋, 王东新, 许德美, 郭凯琪, 杨培军, 秦高梧. 原子模拟研究铍$〈11\bar{2}0〉$对称倾侧晶界的能量与结构特性[J]. 材料导报, 2025, 39(4): 23110178-7.
WANG Huiming, JIN Jianfeng, WANG Dongxin, XU Demei, GUO Kaiqi, YANG Peijun, QIN Gaowu. Energetic and Structure Characteristics of the $〈11\bar{2}0〉$ Symmetric Tilt Grain Boundaries of Beryllium: Insight from Atomic Simulations. Materials Reports, 2025, 39(4): 23110178-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.23110178  或          https://www.mater-rep.com/CN/Y2025/V39/I4/23110178
1 Zhong J M, Xu D M, Li C G, et al. Materials China, 2014, 33(9), 568 (in Chinese).
钟景明, 许德美, 李春光, 等. 中国材料进展, 2014, 33(9), 568.
2 Xu D M, Qin G W, Li F, et al. Acta Metallurgica Sinica, 2014, 24(5), 1212 (in Chinese).
许德美, 秦高梧, 李峰, 等. 金属学报, 2014, 24(5), 1212.
3 Zheng L F, Wang X G, Yue L N, et al. Chinese Journal of Rare Metals, 2021, 45(4), 475 (in Chinese).
郑莉芳, 王晓刚, 岳丽娜, 等. 稀有金属, 2021, 45(4), 475.
4 Guo Y F, Tang X Z, Zu Q. Chinese Journal of Solid Mechanics, 2021, 42(2), 107 (in Chinese).
郭雅芳, 汤笑之, 俎群. 固体力学学报, 2021, 42(2), 107.
5 Dai Y M, Wang D X, Zhang J K, et al. Rare Metals and Cemented Carbides, 2018, 46(2), 5 (in Chinese).
代彦明, 王东新, 张健康, 等. 稀有金属与硬质合金, 2018, 46(2), 5.
6 Sun D, Ponga M, Bhattacharya K, et al. Journal of the Mechanics and Physics of Solids, 2018, 112, 368.
7 Hu C Y, Wan X L, Zhang Y J, et al. Journal of the Mechanical Behavior of Biomedical Materials, 2021, 118, 104473.
8 Babicheva R I, Dmitriev S V, Bai L, et al. Computational Materials Science, 2016, 117, 445.
9 Sinha S, Kim D, Fleury E, et al. Materials Science and Engineering: A, 2015, 626, 175.
10 Mishin V V, Shishov I A, Stolyarov O N, et al. Materials Characterization, 2020, 164, 110350.
11 Sisneros T A, Brown D W, Clausen B, et al. Materials Science and Engineering: A, 2010, 527(20), 5181.
12 Zhu X, Cheng X. Journal of Crystal Growth, 2020, 531, 125366.
13 Torres E, Pencer J. Journal of Nuclear Materials, 2018, 502, 86.
14 Wan W, Tang C, Zou W. Applied Surface Science, 2022, 599, 153828.
15 Torres E. Computational Materials Science, 2021, 197, 110600.
16 Madhavan S, Hemani H, Lakshminarayana P V, et al. Computational Materials Science, 2022, 211, 111543.
17 Dehaghani MZ, Mashhadzadeh A H, Salmankhani A, et al. Engineering Fracture Mechanics, 2020, 235, 107194.
18 Guo K Q. Effects of crystal anisotropic characteristics of beryllium on its intrinsic plastic response from molecular dynamics simulations. Master Thesis, Northeastern University, 2022 (in Chinese).
郭凯琪. 分子动力学模拟研究晶体各向异性特征对金属铍本征塑性的影响. 硕士学位论文, 东北大学, 2022.
19 Knezevic M, Beyerlein I J, Brown D W, et al. International Journal of Plasticity, 2013, 49, 185.
20 Ferreri N C, Feng Z, Savage D J, et al. International Journal of Plasticity, 2022, 150, 103217.
21 Bhatia M A, Solanki K N. Journal of Applied Physics, 2013, 114, 244309.
22 Wang J, Beyerlein I J. Metallurgical and Materials Transactions A, 2012, 43, 3556.
23 Wang J, Beyerlein I J. Modelling Simulation in Materials Science Engineering,2012, 20(2), 024002.
24 Hirth J P, Pond R C. Progress in Materials Science, 2011, 56(6), 586.
25 Hirth J P, Pond R C, Lothe J. Acta Materialia, 2007, 55(16), 5428.
26 Aidan P T, Aktulga H M, Berger R, et al. Computer Physics Communications, 2022, 271, 108171.
27 Xie H, Pan H, Bai J, et al. Nano Letters, 2021, 21, 9642.
28 Yang P, Li S, Xie H, et al. Journal of Materials Science & Technology, 2023, 142, 253.
29 Agrawal A, Mishra R, Ward L, et al. Modelling and Simulation in Materials Science and Engineering, 2013, 21(8), 085001.
30 Bjorkas C, Juslin N, Timko H, et al. Journal of Physics: Condensed Matter, 2009, 21(44), 445002.
31 Kumar A, Wang J, Tomé C N. Acta Materialia, 2015, 85, 144.
32 Zhu X, Cheng X. Journal of Crystal Growth, 2020, 531, 123366.
33 Gengor G, Nohammed A S K, Sehatoglu H. Acta Materialia, 2021, 219, 117256.
34 Zheng H, Li X, Tran R, et al. Acta Materialia, 2020, 186, 40.
35 Hou J, You Y, Kong X, et al. Acta Materialia, 2021, 211, 116860.
36 Tian S, He C, He H, et al. Computational Materials Science, 2022, 202, 111016.
37 Tsuzuki H, Branicio P S, Rino J P. Computer Physics Communications, 2007, 177, 518.
38 Chirayutthanasak O, Sarochawikasit R, Wisitsorasak A, et al. Scripta Materialia, 2022, 209, 114384.
39 Ye W, Zheng H, Chen C, et al. Scripta Materialia, 2022, 218, 114803.
40 Aksyonov D A, Lipnitskii A G. Computational Materials Science, 2017, 137, 266.
41 Li R, Ma H, Cheng X, et al. Physical Review Letters, 2016, 117, 096401.
42 Li R, Li J, Wang L, et al. Physical Review Letters, 2019, 123, 136802.
[1] 周祎伟, 段海涛, 李健, 马利欣, 李文轩, 尤锦鸿, 贾丹. 外加磁场对摩擦副材料摩擦磨损及抗腐蚀性能影响的研究进展[J]. 材料导报, 2025, 39(2): 23110090-19.
[2] 耿长建, 杨怡斌, 由宝财, 董会苁, 马海坤. 成分相关的单晶Cr-Co-Ni合金形变机制的分子动力学模拟研究[J]. 材料导报, 2025, 39(2): 23120142-5.
[3] 李亚莎, 田泽, 王璐敏, 庞梦昊, 曾跃凯, 赵光辉. 表面接枝KH550 的石墨烯改性聚二甲基硅氧烷热力学性能的分子动力学模拟[J]. 材料导报, 2025, 39(2): 24010155-6.
[4] 刘倩, 卢秉恒. 金属增材制造质量控制及复合制造技术研究现状[J]. 材料导报, 2024, 38(9): 22100064-8.
[5] 左志东, 刘先斌, 刘吉波, 汪小锋, 陈剑斌. 汽车用2024-T351铝合金的动态力学行为各向异性[J]. 材料导报, 2024, 38(8): 22080196-9.
[6] 童涛涛, 李宗利, 刘士达, 张晨晨, 金鹏. 从纳米水化硅酸钙到水泥净浆弹性性能多尺度递推模型[J]. 材料导报, 2024, 38(7): 22120188-8.
[7] 杨程程, 柳力, 刘朝晖, 黄优, 刘磊鑫. 基于分子动力学的偶联剂接枝改性玄武岩纤维与沥青粘附特性研究[J]. 材料导报, 2024, 38(6): 22110027-7.
[8] 汤文, 旷强, 张宇翔, 吕悦晶. 植物油微胶囊沥青混合料的微观力学性能及自愈合机制[J]. 材料导报, 2024, 38(4): 22090060-7.
[9] 乔礼红, 游才印, 付花睿, 田娜, 白洋, 刘小鱼. 不同界面次序CoFeMnSi多层膜的磁各向异性[J]. 材料导报, 2024, 38(18): 23040015-6.
[10] 付璐, 赵晏, 任帅, 孙智妍, 赵英利, 张中武. 横纵轧对低合金高强度钢夹杂物变形行为和低温韧性的影响[J]. 材料导报, 2024, 38(17): 23020218-6.
[11] 郑度奎, 李敬法, 宇波, 黄志强, 张引弟, 刘翠伟, 赵杰, 韩东旭. 非金属PE管材氢气-甲烷渗透研究进展[J]. 材料导报, 2024, 38(16): 23020018-11.
[12] 崔晔晖, 赵昂, 曾祥国. NiTi合金强冲击荷载下微孔洞演化行为的分子动力学研究[J]. 材料导报, 2024, 38(15): 23040134-11.
[13] 李泽政, 申宏飞, 吴文平. 含孔洞Cu64Zr36及Cu/Cu64Zr36复合材料拉伸变形的分子动力学研究[J]. 材料导报, 2024, 38(15): 23040235-6.
[14] 朱雅婧, 徐光霁, 马涛, 范剑伟, 胡靖. 基于有限元和分子模拟的热再生沥青激活行为研究[J]. 材料导报, 2024, 38(13): 22040306-7.
[15] 李天宇, 柴肇云, 杨泽前, 辛子朋, 孙浩程, 闫珂. 高岭石表面水化机理及电场弱化其吸附性能的分子模拟[J]. 材料导报, 2024, 38(1): 22050283-7.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed