Please wait a minute...
材料导报  2025, Vol. 39 Issue (24): 24110101-7    https://doi.org/10.11896/cldb.24110101
  无机非金属及其复合材料 |
气化渣-硅酸盐水泥复合胶凝材料水化硬化机理研究
王新龙, 徐名凤, 聂松, 陈禹廷, 李辉, 皮振宇, 周健*
河北工业大学土木与交通学院,天津 300401
Study on Hydration and Hardening Mechanism of Coal Gasification Slag-Portland Cement Composite Cementitious Materials
WANG Xinlong, XU Mingfeng, NIE Song, CHEN Yuting, LI Hui, PI Zhenyu, ZHOU Jian*
School of Civil Engineering and Transportation, Hebei University of Technology, Tianjin 300401, China
下载:  全 文 ( PDF ) ( 14358KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 气化渣是煤气化过程中产生的一种固体废弃物,具有一定火山灰活性,可作为辅助胶凝材料使用。本工作研究了气化渣掺量对硅酸盐水泥抗压强度和水化过程的影响,旨在为气化渣在胶凝材料中的应用奠定理论基础。采用XRD、热重(TG)分析、SEM和等温量热分析等手段考查了胶凝材料的水化机理。结果表明,气化渣的掺入会导致硅酸盐水泥早期抗压强度显著降低,但对后期强度的影响相对较小。气化渣的掺入使单位质量水泥的氢氧化钙生成量增加,提高水泥的水化速率。气化渣在早期的反应程度较低,在7 d之后发生明显水化。气化渣的水化增加了单位质量水泥中C-S-H凝胶的生成量,这减轻了气化渣的掺入对水泥后期强度带来的负面影响。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王新龙
徐名凤
聂松
陈禹廷
李辉
皮振宇
周健
关键词:  气化渣  硅酸盐水泥  抗压强度  水化产物  水化放热  反应程度    
Abstract: Coal gasification slag is a type of solid waste produced during the coal gasification process. It possesses a certain level of pozzolanic activity and can be used as an auxiliary cementing material. This study investigated the effect of coal gasification slag content on the compressive strength and hydration process of silicate cement, aiming to establish a theoretical basis for the application of coal gasification slag in cementitious materials. The hydration mechanism of the cementitious materials was explored by means of XRD, thermogravimetric (TG) analysis, SEM, and isothermal calorimetry. The results indicated that the incorporation of coal gasification slag significantly reduced the early compressive strength of silicate cement, but had a relatively minor impact on the later strength. The addition of coal gasification slag increased the amount of calcium hydroxide generated per unit mass of cement, thereby accelerating the hydration rate of the cement. The reactivity of the coal gasification slag in the early stage was relatively low, with significant hydration occurring after 7 d. The hydration of coal gasification slag increased the amount of C-S-H gel generated per unit of cement, and reduced the negative impact of coal gasification slag on the strength of cement in the later stage.
Key words:  coal gasification slag    Portland cement    compressive strength    hydration product    hydration heat release    conversion
出版日期:  2025-12-25      发布日期:  2025-12-17
ZTFLH:  TU528  
基金资助: 国家自然科学基金(52178200)
通讯作者:  *周健,博士,河北工业大学土木与交通学院教授、博士研究生导师。目前主要从事低碳利废水泥设计、性能与应用技术研究。zhoujian@hebut.edu.cn   
作者简介:  王新龙,河北工业大学土木与交通学院硕士研究生,在周健教授的指导下开展低碳胶凝材料开发与应用方面的研究。
引用本文:    
王新龙, 徐名凤, 聂松, 陈禹廷, 李辉, 皮振宇, 周健. 气化渣-硅酸盐水泥复合胶凝材料水化硬化机理研究[J]. 材料导报, 2025, 39(24): 24110101-7.
WANG Xinlong, XU Mingfeng, NIE Song, CHEN Yuting, LI Hui, PI Zhenyu, ZHOU Jian. Study on Hydration and Hardening Mechanism of Coal Gasification Slag-Portland Cement Composite Cementitious Materials. Materials Reports, 2025, 39(24): 24110101-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24110101  或          https://www.mater-rep.com/CN/Y2025/V39/I24/24110101
1 Izumi Y, Iizuka A, Ho H J. Journal of Cleaner Production, 2021, 312, 127618.
2 Jung T, Koo J. In:2012 8th International Conference on Computing Technology and Information Management (NCM and ICNIT). IEEE, 2012, pp. 202.
3 Wojtacha-Rychter K, Kucharski P, Smolinski A. Energies, 2021, 14, 1539.
4 Li C, Gong X Z, Cui S P, et al. Materials Science Forum, 2011, 685, 181.
5 Gartner E. Cement and Concrete Research, 2004, 34, 1489.
6 Turner L K, Collins F G. Construction and Building Materials, 2013, 43, 125.
7 Chen X, Liu J W, Zhou M K. Applied Mechanics and Materials, 2014, 548, 228.
8 Liu C, Zhao Q, Wang Y, et al. Chinese Journal of Chemical Engineering, 2016, 24, 1552.
9 Xu O, Han S, Liu Y, et al. International Journal of Pavement Engineering, 2021, 22, 1858.
10 Pan J R, Huang C, Kuo J J, et al. Waste Management, 2008, 28, 1113.
11 Wang Y, Wen Z, Yao J, et al. Renewable and Sustainable Energy Reviews, 2020, 134, 110128.
12 Akca A H, Ozyurt N. Construction and Building Materials, 2018, 159, 540.
13 Jie H J, Tian F Y, Yang W. Journal of Fuel Chemistry and Technology, 2002, 30, 385.
14 Zhang Y F, Qu J S, Zhang J B, et al. Science of the Total Environment, 2024, 926, 172011.
15 Zhu Y K, Wu J J, Zhang Y X. Separation and Purification Technology, 2024, 330, 125452.
16 Lv B, Deng X D, Jiao F S. Process Safety and Environmental Protection, 2023, 171, 859.
17 Ren L, Ding L, Guo Q H, et al. Journal of Cleaner Production, 2023, 398, 136554.
18 Luo Z T, Ma B G, Yang J J, el al. Materials Reports, 2011, 25(11), 4 (in Chinese).
罗忠涛, 马保国, 杨久俊, 等. 材料导报, 2011, 25(11), 4.
19 Ma Z C, Wang L. Materials Reports, 2011, 25(19), 5 (in Chinese).
马忠诚, 汪澜. 材料导报, 2011, 25(19), 5.
20 Chang R Q, Zhang J B, Li H Q, et al. Construction and Building Materials, 2024, 426, 136164.
21 Fu B, Cheng Z Y, Wang D Z, et al. Construction and Building Materials, 2022, 323, 126587.
22 Fang K, Zhang D, Wang D J, et al. Journal of Building Engineering, 2023, 69, 15.
23 Zhao Y Q, Gu X W, Xu X C. Construction and Building Materials, 2024, 451, 138776.
24 Adu-Amankwah S, Black L, Skocek J, et al. Construction and Building Materials, 2018, 164, 451.
25 Duan S Y, Guo H H, Sun H, et al. Construction and Building Materials, 2024, 443, 137736.
26 Luo F, Jiang Y S, Wei C D. Construction and Building Materials, 2021, 269, 121259.
27 Hang M Y, Lyu X T, Guo Y M, et al. China Concrete and Cement Pro-ducts, 2019(2), 94 (in Chinese).
杭美艳, 吕学涛, 郭艳梅, 等. 混凝土与水泥制品, 2019(2), 94.
28 Yuan H D, Yin H F, Tang Y, et al. Bulletin of the Chinese Ceramic Society, 2017, 36(9), 3053 (in Chinese).
袁蝴蝶, 尹洪峰, 汤云, 等. 硅酸盐通报, 2017, 36(9), 3053.
29 Fu B, Ma M F, Shen W, et al. Bulletin of the Chinese Ceramic Society, 2020, 39(8), 5 (in Chinese).
傅博, 马梦凡, 申旺, 等. 硅酸盐通报, 2020, 39(8), 5.
30 Ajaxon I, Maazouz Y, Ginebra M P, et al. Journal of Biomaterials Applications, 2015, 30, 526.
31 Masoudi R, Hooton R D. Cement and Concrete Composites, 2019, 103, 193.
32 Liu R G. Hydration mechanism and long-term properties of cement-slag composite cementitious materials. Ph. D. Thesis, Tsinghua University, China, 2013 (in Chinese).
刘仍光. 水泥-矿渣复合胶凝材料的水化机理与长期性能. 博士学位论文, 清华大学, 2013.
[1] 明阳, 肖登凯, 李玲, 李忻恒, 朱奇阳, 黄登科, 任昊. 亚硝酸型Cl-固化剂在海砂混凝土中的固化机理研究[J]. 材料导报, 2025, 39(8): 23100207-7.
[2] 钟新宇, 赖俊英, 阮少钦, 钱晓倩, 钱匡亮. 复合早强剂对掺石灰石粉砂浆强度和水化作用的影响[J]. 材料导报, 2025, 39(5): 24010244-8.
[3] 纪泳丞, 王大洋, 贾艳敏. PVA纤维增强砖骨料再生混凝土数值模拟及尺寸效应研究[J]. 材料导报, 2025, 39(3): 23100214-11.
[4] 范明辉, 李薇, 焦宇浩, 任文渊, 罗滔, 赵丁筱烨. 基于SR-SSA-SVR的铁尾矿砂混凝土抗压强度预测[J]. 材料导报, 2025, 39(24): 24120042-8.
[5] 霍海峰, 贾汶韬, 孙涛, 成鑫磊, 陈庆炜, 徐晖, 李涛. 压实雪抗压强度变化规律及烧结机制试验研究[J]. 材料导报, 2025, 39(23): 24120101-8.
[6] 朱绘美, 刘毓, 李辉. 微波养护期间磨细粉煤灰碱激发胶凝材料的强度发展[J]. 材料导报, 2025, 39(20): 24090095-7.
[7] 张凯帆, 王晓军, 王长龙, 胡凯建, 白云翼, 陈辰, 付兴帅. 废弃加气混凝土基胶凝材料协同锂渣制备充填料的研究[J]. 材料导报, 2025, 39(2): 23120264-8.
[8] 黄斌彬, 曾磊, 汪超, 孙良福, 胡高兴. 基于Bi-LSTM与改进NSGAIII的混凝土配合比多目标优化[J]. 材料导报, 2025, 39(19): 24090069-8.
[9] 任才富, 王栋民, 房奎圳, 王吉祥, 李晓慧, 张信龙. 硫铝水泥改性固废基胶凝材料性能与水化进程研究[J]. 材料导报, 2025, 39(18): 24090006-8.
[10] 海然, 崔力, 翟胜田, 刘俊霞, 惠存, 王超圣. 基于文献聚类分析的再生混凝土抗压强度及耐久性最新研究进展[J]. 材料导报, 2025, 39(17): 24050154-9.
[11] 郭长旭, 李晓丽, 解卫东, 李大虎, 王靖丰, 赵晓泽. 电石渣-矿渣基砒砂岩复合土强度及微观机理研究[J]. 材料导报, 2025, 39(17): 24070063-8.
[12] 许开成, 王文鹏, 张立卿. 不同来源粗骨料混合再生混凝土抗压强度及其预测模型建立[J]. 材料导报, 2025, 39(12): 23110068-9.
[13] 吴平川, 刘治兵, 黄天勇, 郑永超, 张凯帆, 王长龙, 康旺, 付兴帅, 白云翼, 翟玉新, 刘枫. 煤气化渣胶凝活性激发及机理研究进展[J]. 材料导报, 2025, 39(12): 24030152-9.
[14] 张彩利, 王怀毅, 王犇, 于焱龙, 张崇僖. 大掺量钢渣微粉-水泥泡沫轻质土的孔结构表征及其对力学性能的影响[J]. 材料导报, 2025, 39(1): 23100044-9.
[15] 周宏元, 母崇元, 王小娟, 李润琳, 曹万林. 地聚物再生混凝土抗压强度的离散性分析[J]. 材料导报, 2025, 39(1): 23100132-8.
[1] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[2] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[3] JIA Zhihong, WENG Yaoyao, DING Lipeng, CHENG Tao, LIU Yingying, LIU Qing. Sn Microalloying for Aluminum Alloys: Strengthening Effects and Mechanisms[J]. Materials Reports, 2017, 31(9): 123 -127 .
[4] WANG Ru, ZHANG Shaokang, WANG Gaoyong. Influence and Mechanism of Mineral Admixtures on Setting and Hardening of Styrene-Butadiene Copolymer/Cement Composite Cementitious Material[J]. Materials Reports, 2017, 31(24): 69 -73 .
[5] DING Yutian, DOU Zhengyi, GAO Yubi, GAO Xin, LI Haifeng, LIU Dexue. In-situ Observation of Solidification Process of GH3625 Superalloy at Different Cooling Rates[J]. Materials Reports, 2017, 31(24): 150 -155 .
[6] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[7] LIU Guoyi, LIU Yuanjun, ZHAO Xiaoming. A Study on Protecting Efficiency to the Radiative Heat of the Outer Fabric for the Fire Proximity Suits[J]. Materials Reports, 2017, 31(22): 116 -120 .
[8] ZHANG Wangxi, WANG Yanzhi, LIANG Baoyan, LI Qiquan, LUO Wei, SUN Changhong, CHENG Xiaozhe, SUN Yuzhou. Review on the Development of Nanodiamonds Used as Functional Materials[J]. Materials Reports, 2018, 32(13): 2183 -2188 .
[9] YANG Fang, ZHANG Long, YU Kun, QI Tianjiao, GUAN Debin. Recent Advances in Humidity Sensitivity of Graphene[J]. Materials Reports, 2018, 32(17): 2940 -2948 .
[10] TIAN Yaqiang, LI Wang, ZHENG Xiaoping, WEI Yingli, SONG Jinying, CHEN Liansheng. Application of Alloy Elements in Quenching and Partitioning Steel:an Overview[J]. Materials Reports, 2019, 33(7): 1109 -1118 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed