Please wait a minute...
材料导报  2025, Vol. 39 Issue (23): 24120093-10    https://doi.org/10.11896/cldb.24120093
  高分子与聚合物基复合材料 |
聚四氟乙烯/聚醚醚酮(PTFE/PEEK)复合材料的制备及摩擦学性能研究
王艺璇1,2, 唐鸣津1,2, 杨晓萱2, 王露露1,2, 薛键鑫2, 王帅2, 宋晨飞2, 陆焕焕2, 李杰2, 逄显娟1,2,*
1 河南科技大学化学化工学院,河南 洛阳 471023
2 河南科技大学高端轴承摩擦学技术与应用国家地方联合工程实验室,河南 洛阳 471023
Preparation and Tribological Properties of Polytetrafluoroethylene/Polyether Ether Ketone (PTFE/PEEK) Composite Materials
WANG Yixuan1,2, TANG Mingjin1,2, YANG Xiaoxuan2, WANG Lulu1,2, XUE Jianxin2, WANG Shuai2,SONG Chenfei2, LU Huanhuan2, LI Jie2, PANG Xianjuan1,2,*
1 School of Chemistry and Chemical Engineering, Henan University of Science and Technology, Luoyang 471023, Henan, China
2 National United Engineering Laboratory for Advanced Bearing Tribology, Henan University of Science and Technology, Luoyang 471023, Henan, China
下载:  全 文 ( PDF ) ( 51135KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用热压烧结法制备了以PTFE微粉为添加相、PEEK为基体的复合材料,系统研究了PTFE含量以及载荷、速度对PEEK及其复合材料性能的影响。结果表明,热压烧结法成功制备了PTFE/PEEK复合材料,PTFE的加入并没有改变复合材料的晶体结构以及化学结构,但可以有效改善PEEK基复合材料的摩擦学性能。PTFE/PEEK基复合材料的摩擦系数和磨损率随PTFE含量的增加呈先降低后上升的趋势。当PTFE的质量分数为10%时,PTFE/PEEK复合材料的摩擦学性能最佳。与纯PEEK相比(62.83 mm/s、25 N时),10% PTFE/PEEK复合材料的摩擦系数和磨损率分别降低了66.7%、76.0%。纯PEEK及10% PTFE/PEEK复合材料的摩擦系数随着载荷的增加呈先增加后减小的趋势;随线速度的增加呈增大的趋势。纯PEEK及10% PTFE/PEEK复合材料的磨损率随载荷的增加逐渐增大;纯PEEK的磨损率随线速度的增加逐渐增大,10% PTFE/PEEK复合材料的磨损率随线速度的增加先减小后增大。纯PEEK在不同载荷或不同速度下的磨损机制主要是疲劳磨损和黏着磨损。10% PTFE/PEEK复合材料在低载荷(25、50 N)时的磨损机制主要是轻微黏着磨损和疲劳磨损,同时伴随微小的磨粒磨损;当载荷为75 N时,磨损机制主要为严重的黏着磨损。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王艺璇
唐鸣津
杨晓萱
王露露
薛键鑫
王帅
宋晨飞
陆焕焕
李杰
逄显娟
关键词:  聚醚醚酮(PEEK)  聚四氟乙烯(PTFE)  复合材料  摩擦磨损    
Abstract: The composite material with PTFE micro-powder as additive phase and PEEK as matrix was prepared by hot pressing sintering method. The effects of PTFE content, load and velocity on the properties of PEEK and its composites were studied systematically. The results showed that PTFE/PEEK composites were successfully prepared by hot pressing sintering method. The addition of PTFE don’t change the crystal structure and chemical structure of the composites, but it can effectively improve the tribological properties of PEEK composites. The friction coefficient and wear rate of PTFE/PEEK-based composites decreases first and then increases with the increase of PTFE content. When the mass fraction of PTFE is 10%, the tribological properties of PTFE/PEEK composites are the best. Compared with pure PEEK (62.83 mm/s, 25 N), the friction coefficient and wear rate of 10% PTFE/PEEK composite are reduced by 66.7% and 76.0%, respectively. The friction coefficient of pure PEEK and 10% PTFE/PEEK composites increases first and then decreases with the increase of load, and increases with the increase of linear velocity. The wear rate of pure PEEK and 10% PTFE/PEEK composite gradually increases with the increase of load. The wear rate of pure PEEK gradually increases with the increase of line speed, and the wear rate of 10% PTFE/PEEK composite first decreases and then increases with the increase of line speed. The wear mechanism of pure PEEK under different loads or different speeds is mainly fatigue wear and adhesive wear. The wear mechanism of 10% PTFE/PEEK composite at low load (25, 50 N) is mainly slight adhesive wear and fatigue wear, accompanied by small abrasive wear. When the load is 75 N, the wear mechanism is mainly severe adhesive wear.
Key words:  polyether-ether-ketone (PEEK)    polytetrafluoroethylene (PTFE)    composite    friction and wear
出版日期:  2025-12-10      发布日期:  2025-12-03
ZTFLH:  TB332  
基金资助: 国家自然科学基金(92266205;52105181);宁波市重点研发计划暨“揭榜挂帅”(2023Z006;2022Z050)
通讯作者:  *逄显娟,教授、博士研究生导师。长期从事材料摩擦和表面工程方面的科学研究与教学工作。xjpang2001@haust.edu.cn   
作者简介:  王艺璇,硕士研究生。主要从事复合材料的制备与摩擦学性能研究。
引用本文:    
王艺璇, 唐鸣津, 杨晓萱, 王露露, 薛键鑫, 王帅, 宋晨飞, 陆焕焕, 李杰, 逄显娟. 聚四氟乙烯/聚醚醚酮(PTFE/PEEK)复合材料的制备及摩擦学性能研究[J]. 材料导报, 2025, 39(23): 24120093-10.
WANG Yixuan, TANG Mingjin, YANG Xiaoxuan, WANG Lulu, XUE Jianxin, WANG Shuai,SONG Chenfei, LU Huanhuan, LI Jie, PANG Xianjuan. Preparation and Tribological Properties of Polytetrafluoroethylene/Polyether Ether Ketone (PTFE/PEEK) Composite Materials. Materials Reports, 2025, 39(23): 24120093-10.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24120093  或          https://www.mater-rep.com/CN/Y2025/V39/I23/24120093
1 Qiu X T, Fu C L, Gu A Q, et al. High Performance Polymers, 2019, 326, 645.
2 Chen C Y, Zhang C, Zhao Z Q, et al. International Journal of Mechanical Sciences, 2019, 155, 170.
3 Zhu S, Qian Y, Elwathig A M, et al. Composites Communications, 2020, 18, 43.
4 Yi M, Duan H T, Chen S, et al. Engineering Plastics Application, 2018, 46(6), 105 (in Chinese).
易蒙, 段海涛, 陈松, 等. 工程塑料应用, 2018, 46(6), 105.
5 Li N, Chen D Q, Gao X Y, et al. Reviews on Advanced Materials Science, 2020, 59, 399.
6 Dang Z, Gao D Q, Yang J, et al. Engineering Plastics Application, 2020, 48(9), 166 (in Chinese).
党哲, 高东强, 杨杰, 等. 工程塑料应用, 2020, 48(9), 166.
7 Sabbir A, Shantanu. Journal of Polymer Engineering Bhowmik, 2018, 39(1), 1.
8 Guo L H, Zhang G, Wang D A, et al. Composites Part A:Applied Science and Manufacturing, 2017, 102, 400.
9 Pang X J, Yue S W, Huang S L, et al. Frontiers in Materials, 2023, 10, 1197604.
10 Awaja F, Guarino R, Tripathi M, et al. Tribology International, 2022, 176, 107915.
11 Henriques B, Fabris D, Joana M G, et al. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 84, 225.
12 Cheng B X, Duan H T, Chen Q, et al. Applied Surface Science, 2021, 566, 150668.
13 Yue S W, Pang X J, Niu Y X, et al. Materials Reports, 2022, 36(16), 255 (in Chinese).
岳世伟, 逄显娟, 牛一旭, 等. 材料导报, 2022, 36(16), 255.
14 Huang S L, Pang X J, Yue S W, et al. Tribology, 2023, 43(6), 616 (in Chinese).
黄素玲, 逄显娟, 岳世伟, 等. 摩擦学学报, 2023, 43(6), 616.
15 Hou X, Bai P P, Li J Y, et al. Friction, 2023, 11, 1660.
16 Feng C N, Guo Y, Yu Z Y, et al. Tribology International, 2023, 181, 108315.
17 Ángel A A, Lu C, Verónica S M, et al. Polymers, 2020, 12(12), 2765.
18 Wang Q F, Wang Y X, Wang H L, et al. Polymers for Advanced Techno-logies, 2017, 29(2), 896.
19 Cai Z J, Wang J Q. Materials for Mechanical Engineering, 2018, 42(5), 69 (in Chinese).
蔡振杰, 王佳祺. 机械工程材料, 2018, 42(5), 69.
20 Ma Z L, Zhang G C, Yang Q, et al. The Journal of Supercritical Fluids, 2018, 140, 116.
21 Huang L. Polymer materials, Chemical Industry Press, China, 2005, pp. 136 (in Chinese).
黄丽. 高分子材料, 化学工业出版社, 2005, pp. 136.
22 Dhanumalayan E, Girish M J. Advanced Composites and Hybrid Materials, 2018, 1, 247.
23 Wang R L, Xu G B, He Y C. E-Polymers, 2017, 17(3), 215.
24 Ye J, Khare H S, Wear, 2013, 297(1-2), 1095.
25 Zang H, Wu Y, Liang M, et al. Journal of Thermoplastic Composite Materials, 2020, 35(9), 1319.
26 Onodera T, Nunoshige J, Kawasaki K, et al. The Journal of Physical Chemistry C, 2017, 121(27), 14589.
27 Gu D P, Zhang L X, Chen S W, et al. Polymers, 2018, 10(9), 966.
28 Zheng Q, Zhang Y F. Applied Physics A, 2020, 126, 104.
29 Su Y L, Chen X M, Yu Z D, et al. Journal of Materials Science, 2017, 52, 2934.
30 Venkata K E, Rajesh G, Anbuchezhiyan G, et al. Materials Today:Proceedings, 2023, 5, 630.
31 Cheng H, Xie Y C, Tang Q H, et al. Transactions of Nonferrous Metals Society of China, 2018, 28(7), 1360.
32 Zhang L, Fang W L, Tian W B, et al. Coatings, 2024, 14(1), 16.
33 Pang X J, Yue S W, Huang S L, et al. China Mechanical Engineering, 2023, 34(3), 277 (in Chinese).
逄显娟, 岳世伟, 黄素玲, 等. 中国机械工程, 2023, 34(3), 277.
34 Xie J M, Pang X J, Zhao R F, et al. Materials Reports, 2024, 38(16), 273 (in Chinese).
谢金梦, 逄显娟, 赵若凡, 等. 材料导报, 2024, 38(16), 273.
35 Huang S L. Preparation and properties of PEEK-based wear-resistant and antistatic composites. Master’s Thesis, Henan University of Science and Technology, China, 2023 (in Chinese).
黄素玲. PEEK基耐磨抗静电复合材料的制备及性能研究. 硕士学位论文, 河南科技大学, 2023.
36 Yang K, Niu Y P, Li Y, et al. Tribology International, 2023, 186, 108597.
37 Zhang Z W, He Y, He Y, et al. Materials, 2022, 15(19), 6524.
38 Georgescu G, Deleanu L, Titire L C, et al. Materials, 2021, 14(4), 997.
[1] 董洪年, 杨明, 林天一, 陈沛然, 魏婷婷. 针刺密度对碳/碳复合材料力学行为影响的仿真分析[J]. 材料导报, 2025, 39(9): 23120170-6.
[2] 祝林, 王帅, 游龙, 刘娟, 逄显娟, 陆焕焕, 宋晨飞, 张永振. Mo2BC增强Al基复合材料摩擦学性能研究[J]. 材料导报, 2025, 39(9): 24010247-6.
[3] 苟清懿, 廖华, 陈凤阳, 曾瑞林, 刘慧哲, 杨妮, 侯彦青, 谢刚. 锂离子电池中锗基负极材料的构建及改性研究[J]. 材料导报, 2025, 39(8): 24050228-11.
[4] 彭润玲, 王威, 刘锦悦, 高展, 郭俊德, 张耿. 冻干法制备石墨烯负载二硫化钼及其润滑性能研究[J]. 材料导报, 2025, 39(8): 24020011-7.
[5] 脱锦鹏, 陈安琦, 姚富升, 徐俊杰, 李响, 董龙龙, 杨义. 颗粒增强耐热钛基复合材料设计制备研究进展[J]. 材料导报, 2025, 39(8): 24040119-10.
[6] 崔岩, 李硕, 曹雷刚, 杨越, 刘园. 颗粒级配对55%SiC/Al复合材料力学性能和尺寸稳定性的影响[J]. 材料导报, 2025, 39(8): 23120157-7.
[7] 黄晗冰, 王培, 乔石, 马如龙, 郝振华, 舒永春, 何季麟. Cu-0.9Be-1.5Ni-0.04Y合金的摩擦磨损与电化学腐蚀性能研究[J]. 材料导报, 2025, 39(7): 24010241-8.
[8] 李翠利, 申纯宇, 杨英, 王兴龙, 汤建伟, 化全县, 刘咏, 刘鹏飞, 丁俊祥, 申博, 王保明. 离子液体在纳米材料制备中的应用进展[J]. 材料导报, 2025, 39(7): 24020066-9.
[9] 孙国栋, 吕龙飞, 解静, 贾研, 康凯, 郑斌, 尹昭怡, 田清来. 碳纤维增强复合材料阻尼性能的研究进展[J]. 材料导报, 2025, 39(6): 24010168-11.
[10] 武明生, 侯震, 郑硕鵾, 金志明, 张亚军. 玻纤/聚丙烯直接注射成型及工艺参数影响研究[J]. 材料导报, 2025, 39(6): 24010149-6.
[11] 汪依宁, 陈东东, 肖守讷, 王明猛, 何子坤. 湿热老化环境下碳纤维增强树脂基复合材料力学性能退化机制及性能预测[J]. 材料导报, 2025, 39(6): 23110140-8.
[12] 姜文平, 庞兴志, 何娟霞, 杨文超, 湛永钟. 骨修复用钛合金-羟基磷灰石复合材料的制备工艺及性能综述[J]. 材料导报, 2025, 39(5): 24090227-14.
[13] 于巧玲, 刘成宝, 郑磊之, 陈丰, 邱永斌, 孟宪荣, 陈志刚. g-C3N4基纳米复合材料的合成及电化学传感性能研究[J]. 材料导报, 2025, 39(3): 23090112-11.
[14] 卞宏友, 柳金生, 刘伟军, 张广泰, 姚佳彬, 邢飞. 激光沉积修复GH738/K417G合金时效热处理组织性能分析[J]. 材料导报, 2025, 39(3): 23110265-6.
[15] 万思宇, 苏三庆, 曹振, 王照耀. 混杂纤维高强高延性水泥基复合材料弯曲性能及预测模型[J]. 材料导报, 2025, 39(23): 24120022-10.
[1] JIN Qinglin, WANG Yang, CAO Lei, SONG Qunling. Effect of Nitriding in Mushy Zone on the Nitrogen Content and Solidification Transformation of Cr10Mn9Ni0.7 Alloy[J]. Materials Reports, 2018, 32(4): 579 -583 .
[2] WANG Shengmin, ZHAO Xiaojun, HE Mingyi. Research Status and Development of Mechanical Plating[J]. Materials Reports, 2017, 31(5): 117 -122 .
[3] HE Yuandong, SUN Changzhen, MAO Weiguo, MAO Yiqi, ZHANG Honglong, CHEN Yanfei, PEI Yongmao, FANG Daining. Measurement of Transverse Piezoelectric Coefficients of Pb(Zr0.52Ti0.48)O3 Thin Films by a Mechano-electrical Multiphysics Coupling, Bulge Test Method[J]. Materials Reports, 2017, 31(15): 139 -144 .
[4] TAO Lei, ZHENG Yunwu,DI Mingwei, ZHANG Yanhua, ZHENG Zhifeng. Preparation of Porous Carbon Nanofiber from Liquid Phenolic Resin and Its Characterization[J]. Materials Reports, 2017, 31(10): 101 -106 .
[5] SU Lan, ZHANG Chubo, WANG Zhen, MI Zhenli. Finite Element Simulation of Electromagnetic Induction Heating in Hot Metal Gas Forming[J]. Materials Reports, 2017, 31(24): 182 -177 .
[6] QI Yaping, LUO Faliang, WANG Kezhi, SHEN Zhiyuan, WU Xuejian, WANG Diran. Effect of TMC-300 on the Performance of PLLA/PPC Alloy[J]. Materials Reports, 2018, 32(10): 1672 -1677 .
[7] DU Min, SONG Dian, XIE Ling, ZHOU Yuxiang, LI Desheng, ZHU Jixin. Electrospinning in Rechargeable Ion Batteries for High Efficient Energy Storage[J]. Materials Reports, 2018, 32(19): 3281 -3294 .
[8] LIU Xiao, XU Qian, LAI Guanghong, GUAN Jianan, XIA Chunlei, WANG Ziming, CUI Suping. Application Performances and Mechanism of Polycarboxylic Acid in Different Comb-bonded Structures in High-performance Concrete[J]. Materials Reports, 2018, 32(22): 4011 -4015 .
[9] ZHANG Di, YANG Di, XU Cui, ZHOU Riyu, LI Hao, LI Jing, WANG Peng. Study on Mechanism of Highly Effective Adsorption of Bisphenol F by Reduced Graphene Oxide[J]. Materials Reports, 2019, 33(6): 954 -959 .
[10] LIU Hongyin, YANG Hongyu, CHEN Mingfeng. Impact of Isocyanate Index on Flame Retardancy, Thermal Stability andCombustion Behaviors of Rigid Polyurethane Foam[J]. Materials Reports, 2019, 33(12): 2071 -2075 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed