Please wait a minute...
材料导报  2025, Vol. 39 Issue (23): 24070114-9    https://doi.org/10.11896/cldb.24070114
  无机非金属及其复合材料 |
聚丙烯纤维增韧海砂珊瑚混凝土单轴压缩应力-应变本构关系及微观结构
孙丽*, 蓝世航, 王超
沈阳建筑大学土木工程学院,沈阳 110168
Uniaxial Compressive Stress-Strain Constitutive Relationship and Microstructure of Polypropylene Fibers Toughened Sea Sand Coral Concrete
SUN Li*, LAN Shihang, WANG Chao
School of Civil Engineering, Shenyang Jianzhu University, Shenyang 110168, China
下载:  全 文 ( PDF ) ( 53542KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 海砂珊瑚混凝土(Sea sand coral concrete,SSCC)的抗裂性较差且脆性明显,这极大地限制了其应用。为改善SSCC的脆性和提高抗裂性能,在混凝土中掺入聚丙烯纤维(Polypropylene fiber,PF),制备了聚丙烯纤维海砂珊瑚混凝土(PFSSCC)。宏观上,通过基本力学性能试验和棱柱体单轴压缩试验研究了PFSSCC的力学性能和本构关系;微观上,使用扫描电子显微镜(SEM)观察PFSSCC微观结构并分析了PF增韧机理。结果表明:PFSSCC的单轴压缩典型破坏模式为劈裂破坏,但破坏后完整性较好。当PF掺量为0.2%时,PFSSCC表现出更优异的性能,与基准组相比,劈裂抗拉强度、峰值应变、抗压韧性指数和延性系数分别最多提高了16.0%、8.7%、57.7%和40.8%。相比于SSCC,PFSSCC的应力-应变曲线下降段坡度较为平缓,脆性得到有效改善。基于试验数据建立了考虑混凝土抗压强度和聚丙烯纤维掺量的单轴受压本构模型,模型可有效预测PFSSCC在单轴压缩下的应力-应变行为,为PFSSCC在海洋工程中的实际应用提供了试验案例和理论依据。另外,通过SEM观察,发现PF的失效模式为拔出和拉断模式。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙丽
蓝世航
王超
关键词:  聚丙烯纤维海砂珊瑚混凝土  力学性能  本构模型  微观结构    
Abstract: Sea sand coral concrete(SSCC) has poor crack resistance and obvious brittleness, which has greatly drawbacked its application. In order to improve the brittleness and enhance the cracking resistance of SSCC, polypropylene fiber (PF) was added into the concrete to prepare a new type of marine concrete, that is, polypropylene fiber sea sand coral concrete (PFSSCC). Macroscopically, the mechanical properties and constitutive relationship of PFSSCC were investigated by basic mechanical property tests and prismatic uniaxial compression tests. Microscopically, the scanning electron microscope (SEM) was used to observe the microstructure of PFSSCC and analyze the PF-enhancement mechanism. The results show that the typical damage pattern of uniaxial compression of PFSSCC is shear damage and the integrity after damage is good. When the PF doping is 0.2%, PFSSCC shows better performance, compared with the benchmark group, the splitting tensile strength, peak strain, compressive toughness index and ductility coefficient increased by 16.0%, 8.7%, 57.7%, and 40.8%, respectively. The slope of the descending section of the stress-strain curve of the sea sand coral concrete after fiber toughening is slowed down, and the brittleness is effectively improved. The uniaxial compression constitutive model established based on the experimental data considering the compressive strength of the concrete and the polypropylene fiber dosage can effectively predict the stress-strain behaviour of the PFSSCC under uniaxial compression. These provide a test case and a theoretical basis for the practical application of the PFSSCC in the offshore engineering. In addition, the failure modes of PF were observed to be pull-out and breakage by SEM.
Key words:  polypropylene fiber sea sand coral concrete    mechanical property    constitutive model    microstructure
出版日期:  2025-12-10      发布日期:  2025-12-03
ZTFLH:  TU528  
基金资助: 国家自然科学基金(52378253;52078310)
通讯作者:  *孙丽,博士,二级教授,博士研究生导师。主要从事结构健康监测、智能材料、海砂珊瑚混凝土等方面的研究。sunli2009@163.com   
引用本文:    
孙丽, 蓝世航, 王超. 聚丙烯纤维增韧海砂珊瑚混凝土单轴压缩应力-应变本构关系及微观结构[J]. 材料导报, 2025, 39(23): 24070114-9.
SUN Li, LAN Shihang, WANG Chao. Uniaxial Compressive Stress-Strain Constitutive Relationship and Microstructure of Polypropylene Fibers Toughened Sea Sand Coral Concrete. Materials Reports, 2025, 39(23): 24070114-9.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24070114  或          https://www.mater-rep.com/CN/Y2025/V39/I23/24070114
1 Su C, Ma H Y, Yu H F, et al. Journal of Chinese Ceramic Society, 2020, 48(11), 1771 (in Chinese).
苏晨, 麻海燕, 余红发, 等. 硅酸盐学报, 2020, 48(11), 1771.
2 Wang A, Lyu B, Zhang Z, et al. Construction and Building Materials, 2018, 187, 1004.
3 Zhou W, Feng P, Lin H W. Construction and Building Materials, 2020, 251, 118957.
4 Yoo D Y, Banthia N. Cement and Concrete Composites, 2016, 73, 267.
5 Xu L H, Huang B, Li B, et al. China Civil Engineering Journal, 2019, 52(4), 1 (in Chinese).
徐礼华, 黄彪, 李彪, 等. 土木工程学报, 2019, 52(4), 1.
6 Wang J C, Li M F, Zhao F L. Journal of Shenyang Jianzhu University(Natural Science), 2024, 40(1), 105 (in Chinese).
王建超, 李梦飞, 赵丰磊. 沈阳建筑大学学报(自然科学版), 2024, 40(1), 105.
7 Wang L, Xiong Z J, Liu C P, et al. Concrete, 2014(7), 96 (in Chinese).
王磊, 熊祖菁, 刘存鹏, 等. 混凝土, 2014(7), 96.
8 Wang L, Yi J, Deng X L, et al. Journal of Henan Polytechnic University(Natural Science), 2016, 35(5), 713 (in Chinese).
王磊, 易金, 邓雪莲, 等. 河南理工大学学报(自然科学版), 2016, 35(5), 713.
9 Wang L, Shen N, Yu D, et al. Proceedings of the Institution of Civil Engineers-Structures and Buildings, 2022, 175(9), 671.
10 Deng Z, Zhou Y, Jiang J, et al. Structural Concrete, 2023, 24(3), 4259.
11 Da B, Yu H, Ma H, et al. Construction and Building Materials, 2016, 122, 81.
12 Wang C, Sun L, Zhang C, et al. Journal of Building Engineering, 2024, 87, 109092.
13 Chen Z P, Qin Q Q, Liang Y, et al. Acta Materiae Compositae Sinica, 2024, 41(8), 1 (in Chinese).
陈宗平, 覃钦泉, 梁莹, 等. 复合材料学报, 2024, 41(8), 1.
14 Sun L, Yang Z, Qin R, et al. Science China Technological Sciences, 2023, 66(2), 378.
15 Xu L H, Deng F Q, Xu H R, et al. China Civil Engineering Journal, 2016, 49(1), 3 (in Chinese).
徐礼华, 邓方茜, 徐浩然, 等. 土木工程学报, 2016, 49(1), 3.
16 China Association for Engineering Construction Standardization. Technical specification for fiber reinforced concrete structures:CECS 38-2004. China Planning Press. China, 2004.
中国工程建设标准化协会. 纤维混凝土结构技术规程:CECS 38-2004. 中国计划出版社. 2004.
17 Fu Q, Xu W, Li D, et al. Cement and Concrete Composites, 2021, 118, 103954.
18 Wang C, Sun L, Sha X. Journal of Shenyang Jianzhu University(Natural Science), 2024, 40(6), 1068 (in Chinese).
王超, 孙丽, 沙鑫. 沈阳建筑大学学报(自然科学版), 2024, 40(6), 1068.
19 Zhou L, Guo S, Ma W, et al. Construction and Building Materials, 2022, 331, 127280.
20 Das C S, Dey T, Dandapat R, et al. Construction and Building Materials, 2018, 189, 649.
21 Xia D T, Li X Y, Wu H. Journal of Shenyang Jianzhu University(Natural Science), 2022, 38(4), 645 (in Chinese).
夏冬桃, 李欣怡, 吴昊. 沈阳建筑大学学报(自然科学版), 2022, 38(4), 645.
22 Huang D G, Niu D T, Fu Q, et al. Concrete, 2018(7), 51 (in Chinese).
黄大观, 牛荻涛, 傅强, 等. 混凝土, 2018(7), 51.
23 Guo M, Hu B, Xing F, et al. Construction and Building Materials, 2020, 234, 117339.
24 Ge L, Feng Z, Sayed U, et al. Construction and Building Materials, 2023, 409, 133921.
25 Li Y, Chen P, Liu Y, et al. Construction and Building Materials, 2023, 408, 133606.
26 Sivakumar A, Santhanam M. Cement and Concrete Composites, 2007, 29(7), 575.
27 Fu Q, Xu W, Bu M, et al. Structures, 2021, 34, 3596.
28 Zhang B, Zhu H, Shan K W. Construction and Building Materials, 2020, 259, 120403.
29 Poon C S, Shui Z H, Lam L. Cement and Concrete Research, 2004, 34(12), 2215.
30 Zhou C, Chen Z. Construction and Building Materials, 2017, 134, 497.
31 Chen Z, Yang Y, Yao Y. Materials & Design, 2013, 44, 500.
32 Liu B, Zhou J, Wen X. Construction and Building Materials, 2020, 263, 120649.
33 Zhang H, Liu X, Ma L, et al. Journal of Building Engineering, 2024, 81, 108140.
34 Guo Z H, Zhang X Q, Zhang D C, et al. Journal of Building Structures, 1982, 3(1), 1 (in Chinese).
过镇海, 张秀琴, 张达成, 等. 建筑结构学报, 1982, 3(1), 1.
[1] 董洪年, 杨明, 林天一, 陈沛然, 魏婷婷. 针刺密度对碳/碳复合材料力学行为影响的仿真分析[J]. 材料导报, 2025, 39(9): 23120170-6.
[2] 夏益健, 张宇, 张云升, 朱微微, 朱文轩. 磨细凝灰岩制备机制砂混凝土力学性能研究[J]. 材料导报, 2025, 39(9): 24030199-7.
[3] 钱如胜, 叶志波, 张云升, 赵儒泽, 孔德玉, 杨杨, 聂海波. 固碳强化再生粗骨料对其混凝土力学强度及体积稳定性的影响[J]. 材料导报, 2025, 39(9): 24020155-6.
[4] 燕伟, 李驰, 邢渊浩, 高瑜. 循环流化床多元固废粉煤灰基水泥胶砂固碳试验研究[J]. 材料导报, 2025, 39(9): 24010111-7.
[5] 陈港明, 王辉, 黄雪飞. 温轧对低铬FeCrAl合金显微组织及室温和高温力学性能的影响[J]. 材料导报, 2025, 39(9): 24060057-11.
[6] 陈继伟, 朱慧雯, 王海镔, 桑建权, 李艳花, 熊芬, 罗建新. 利用Hofmeister效应一步法制备离子导电耐低温强韧PVA水凝胶[J]. 材料导报, 2025, 39(9): 24050045-7.
[7] 陈永达, 胡智淇, 关岩, 常钧, 陈兵. 羟丙基甲基纤维素与硅烷偶联剂对磷酸镁基钢结构防火涂料性能的影响[J]. 材料导报, 2025, 39(8): 24010194-7.
[8] 雒亿平, 邢美光, 王德法, 易万成, 杨连碧, 薛国斌. 赤铁矿对偏高岭土基地聚物力学性能及反应机理的影响[J]. 材料导报, 2025, 39(8): 24040075-8.
[9] 李琼, 安宝峰, 苏睿, 乔宏霞, 王超群. 废玻璃粉透水混凝土物理性能及复合胶凝体系微观机理研究[J]. 材料导报, 2025, 39(8): 23100186-11.
[10] 程焱, 张弦, 苏志诚, 刘静, 吴开明. 具有TRIP效应的先进高强度钢力学性能及腐蚀行为的研究进展[J]. 材料导报, 2025, 39(8): 24020115-8.
[11] 徐焜, 黄子悦, 程云浦, 钱小妹. GNPs改性环氧复合材料等效弹性性能数值预测模型[J]. 材料导报, 2025, 39(8): 24040190-4.
[12] 董硕, 郑立森, 史奉伟, 王来, 刘哲. 钢纤维地聚物再生混凝土力学性能及强度指标换算[J]. 材料导报, 2025, 39(7): 24100219-8.
[13] 谢昭男, 陈军红, 黄西成, 邱勇. 橡胶的热老化力学性能与本构关系研究进展[J]. 材料导报, 2025, 39(7): 23120036-16.
[14] 段明翰, 覃源, 李阳, 耿凯强. 寒冷地区腈纶纤维混凝土力学性能及多层感知器神经网络预测[J]. 材料导报, 2025, 39(6): 23110143-9.
[15] 杨旭, 张天理, 朱志明, 徐连勇, 陈赓, 杨尚磊, 方乃文. 纳米颗粒对铝合金焊接凝固裂纹抑制机理及影响因素的研究进展[J]. 材料导报, 2025, 39(6): 24030070-10.
[1] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[2] WU Wei, CHEN Shiying, ZONG Mengjingzi. Dielectric Properties and Thermal Stability of Nano-Al2O3/Polyether Sulfone-epoxy Resin Composites[J]. Materials Reports, 2017, 31(20): 21 -24 .
[3] MO Peicheng, WU Yi, YU Wenlin, WANG Jilin, ZOU Zhengguang, ZHONG Shenglin, WANG Peng. In Situ Synthesis of PcBN Composites by cBN-Ti-Al-Si and Their Mechanical Property[J]. Materials Reports, 2018, 32(14): 2355 -2359 .
[4] HU Yaoqiang, CHEN Fajin, LIU Haining, ZHANG Huifang, WU Zhijian, YE Xiushen. Preparation of Poly(N-isopropylacrylamide) Hydrogel and Its Thermally Induced Aggregation Behavior[J]. Materials Reports, 2018, 32(14): 2491 -2496 .
[5] SONG Gang, CHI Jiayu, YU Jingwei, LIU Liming. Corrosion Behavior of Mg-steel Laser-TIG Hybrid Welding Joint[J]. Materials Reports, 2018, 32(16): 2773 -2777 .
[6] HUANG Hui, HAN Jianfeng, WANG Yishun, XIA Yang, ZHANG Jun, GAN Yongping, LIANG Chu, ZHANG Wenkui. Supercritical CO2 Assisting Cladding of LiMnPO4 on the Surface of Li[Li0.2-Mn0.54Co0.13Ni0.13]O2 and Its Electrochemical Properties[J]. Materials Reports, 2018, 32(23): 4072 -4078 .
[7] WANG Zhonghui, XIN Yong. Molecular Dynamics Simulation on the Relationship of Oxygen Diffusion and Polymer Chains Activity[J]. Materials Reports, 2019, 33(8): 1293 -1297 .
[8] CHANG Jingjing. Spin Coating Epitaxial Films[J]. Materials Reports, 2019, 33(12): 1919 -1920 .
[9] ZHUANG Xiaodong, LI Rongxing, YU Xiaohua, XIE Gang, HE Xiaocai, XU Qingxin. Preparation of Lithium Titanate Electrode Materials by Solid Phase Method[J]. Materials Reports, 2019, 33(16): 2654 -2659 .
[10] BIAN Guixue, CHEN Yueliang, ZHANG Yong, WANG Andong, WANG Zhefu. Equivalent Conversion Coefficient of Aluminum/Titanium Alloy Between Acidic NaCl Solution with Different Concentration and Water Based on Galvanic Corrosion Simulation[J]. Materials Reports, 2019, 33(16): 2746 -2752 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed