Please wait a minute...
材料导报  2025, Vol. 39 Issue (22): 24110150-7    https://doi.org/10.11896/cldb.24110150
  高分子与聚合物基复合材料 |
纳米硫酸钡填充树脂基自润滑复合材料的制备及性能研究
苏晚驰1, 王伟1,2,*, 李肖鹏3, 杨昊天1
1 西安建筑科技大学机电工程学院,西安 710055
2 西安建筑科技大学冶金工程学院,西安 710055
3 季华实验室,广东 佛山 528200
Study on the Preparation and Properties of Resin-based Self-lubricating Composites Filled with Nano-BaSO4
SU Wanchi1, WANG Wei1,2,*, LI Xiaopeng3, YANG Haotian1
1 School of Mechanical and Electrical Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China
2 School of Metallurgical Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China
3 Ji Hua Laboratory, Foshan 528200, Guangdong, China
下载:  全 文 ( PDF ) ( 20005KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用高温固化的方式制备乙烯基树脂(VER)/聚四氟乙烯(PTFE)/纳米BaSO4自润滑复合材料,研究加入不同质量分数的纳米BaSO4对复合材料力学和摩擦学性能的影响,对复合材料的力学和摩擦学性能进行测试,对复合材料断裂面以及磨损表面进行表征分析。结果表明:随着纳米BaSO4的质量分数逐渐增大,复合材料硬度和压缩性能均呈现先上升后下降的趋势,而摩擦系数和磨损率均呈先下降后上升的趋势。与不含纳米BaSO4的复合材料相比,当纳米BaSO4的质量分数为20%时,硬度提高10.6%,压缩强度提高60.6%,最大压缩强度下的压缩应变提高65.2%,压缩模量提高2.6%,摩擦系数降低15%,磨损率降低30.9%,这归因于纳米BaSO4可以承载绝大部分施加于复合材料表面上的载荷,提升复合材料的力学性能,且在摩擦过程中复合材料摩擦表面易形成稳定光滑的转移膜,避免摩擦副的直接接触。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
苏晚驰
王伟
李肖鹏
杨昊天
关键词:  高温固化  乙烯基树脂  硫酸钡(BaSO4)  自润滑复合材料  力学性能  摩擦学性能    
Abstract: Self-lubricating composites of vinyl resin (VER)/polytetrafluoroethylene (PTFE)/nano-BaSO4 were prepared by high-temperature curing. The influence of incorporating nano-BaSO4 with varying mass fractions on the mechanical and tribological properties of the composites was investigated. The mechanical and tribological properties of the composites were subjected to testing, and the fracture surfaces as well as the worn surfaces of the composites were characterized and analyzed. The results show that with the progressive augmentation of the mass fraction of nano-BaSO4, the hardness and compressive performance of the composites exhibit a tendency of initially ascending and subsequently descending. Meanwhile, the coefficient of friction and the wear rate both demonstrate a trend of initially declining and subsequently rising. Compared with the composites without nano-BaSO4, when the mass fraction of nano-BaSO4 was 20%, the hardness was increased by 10.6%, the maximum compressive strain was increased by 65.2%, the compressive strength was increased by 60.6%, the compressive modulus was increased by 2.6%, the friction coefficient was reduced by 15%, and the wear rate was reduced by 30.9%. This is attributed to the fact that nano-BaSO4 can bear most of the loads applied to the surface of the composites, enhancing the mechanical properties of the composites. Furthermore, in the course of the frictional process, a stable and smooth transfer film is liable to be generated on the frictional surface of the composites, thereby precluding the direct contact of the frictional counterparts.
Key words:  high temperature curing    vinyl resin    nano-BaSO4    self-lubricating composite material    mechanical property    tribological property
出版日期:  2025-11-25      发布日期:  2025-11-14
ZTFLH:  TH145  
基金资助: 国家自然科学基金(51975450);陕西省三秦英才特殊支持计划科技创新领军人才项目(Z20240574);陕西省重点研发项目(2023-BGY-383);陕西省重点研发项目(2023GXLH-063);陕西省教育厅服务地方专项科研计划项目(22JC047)
通讯作者:  *王伟,西安建筑科技大学机电工程学院教授、博士研究生导师。目前主要从事新型二维材料摩擦学、钛合金先进成形技术、材料加工中的摩擦与润滑、自润滑复合材料等方面的研究工作。gackmol@163.com   
作者简介:  苏晚驰,西安建筑科技大学机电工程学院硕士研究生,在王伟教授的指导下进行研究。目前主要研究领域为自润滑复合材料。
引用本文:    
苏晚驰, 王伟, 李肖鹏, 杨昊天. 纳米硫酸钡填充树脂基自润滑复合材料的制备及性能研究[J]. 材料导报, 2025, 39(22): 24110150-7.
SU Wanchi, WANG Wei, LI Xiaopeng, YANG Haotian. Study on the Preparation and Properties of Resin-based Self-lubricating Composites Filled with Nano-BaSO4. Materials Reports, 2025, 39(22): 24110150-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24110150  或          https://www.mater-rep.com/CN/Y2025/V39/I22/24110150
1 Furlan K P, De Mello J D B, Klein A N. Tribology International, 2018, 120, 280.
2 Miyoshi K. Solid lubrication fundamentals and applications. CRC Press, UK, 2019, pp. 32.
3 Huang Y, Wang W D, Huang W, et al. Organo-Fluorine Industry, 2020(4), 47 (in Chinese).
黄彧, 王文东, 黄炜, 等. 有机氟工业, 2020(4), 47.
4 Jin F-L, Li X, Park S-J. Journal of Industrial and Engineering Chemistry, 2015, 29, 1.
5 Yu Z, Li R, Peng Z, et al. Materials Science:Advanced Composite Materials, 2017, 1(1), 1.
6 Peng R P, Chen L, Ye Y P, et al. China Surface Engineering, 2013, 26(1), 57 (in Chinese).
彭仁苹, 陈磊, 冶银平, 等. 中国表面工程, 2013, 26(1), 57.
7 Chauhan S, Kumar A, Patnaik A, et al. Journal of Reinforced Plastics and Composites, 2009, 28(21), 2675.
8 Peng X L. Thermosetting Resin, 2023, 38(3), 49 (in Chinese).
彭新龙. 热固性树脂, 2023, 38(3), 49.
9 Suresha B, Kumar K N S. Materials & Design, 2009, 30(6), 2056.
10 Luo J Q. Technology & Economics in Petrochemicals, 2024, 40(2), 24 (in Chinese).
罗静祺. 石油化工技术与经济, 2024, 40(2), 24.
11 Wu T F. Study on the controllable preparation of highly dispersed nano-sized BaSO4 and their its application performance in nanocomposites. Master's Thesis, Guangxi University, China, 2024 (in Chinese).
吴腾飞. 高分散纳米硫酸钡的可控制备及其纳米复合材料的应用性能研究. 硕士学位论文, 广西大学, 2024.
12 Mansoori E, Morshedian J, Reza R D M. Construction and Building Materials, 2023, 370, 130650.
13 Wang Z, Zhang F, Song N, et al. Polymers and Polymer Composites, 2008, 16(4), 257.
14 Zhang Z T, Liu X X, Zhang D L, et al. China Plastics Industry, 2007(S1), 150 (in Chinese).
张振涛, 刘学习, 张大陆, 等. 塑料工业, 2007(S1), 150.
15 Wang W, Yang H T, Ding S J, et al. Engineering Plastics Application, 2024, 52(4), 8 (in Chinese).
王伟, 杨昊天, 丁士杰, 等. 工程塑料应用, 2024, 52(4), 8.
16 Li G H, Ye Y P, Ma Y J, et al. Tribology, 2021, 41(4), 455 (in Chinese).
李桂花, 冶银平, 马彦军, 等. 摩擦学学报, 2021, 41(4), 455.
17 Xiao Y. Research on the molding and tribological properties of ultra-high molecular weight polyethylene self-lubricating composite materials. Master's Thesis, Beijing University of Chemical Technology, China, 2024 (in Chinese).
肖扬. 超高分子量聚乙烯自润滑复合材料成型及摩擦学性能研究. 硕士学位论文, 北京化工大学, 2024.
18 Hu C, Xu J, Yu J X, et al. Tribology, 2020, 40(1), 12 (in Chinese).
胡超, 徐静, 余家欣, 等. 摩擦学学报, 2020, 40(1), 12.
19 Huang S L, Pang X J, Yue S W, et al. Tribology, 2023, 43(6), 616 (in Chinese).
黄素玲, 逄显娟, 岳世伟, 等. 摩擦学学报, 2023, 43(6), 616.
20 Ahmad M N, Nadeem S, Soltane R, et al. Processes, 2022, 10(9), 1878.
21 Fischer B, Lambertz A, Nuys M, et al. Advanced Materials, 2023, 35(47), 2306351.
22 Liu Y, Guo X, Yang S, et al. Crystal Research and Technology, 2018, 53(6), 1700212.
23 Ding M P, Tang Y S, Dang J, et al. Polymer Materials Science and Engineering, 2009, 25(3), 130 (in Chinese).
丁美平, 唐玉生, 党婧, 等. 高分子材料科学与工程, 2009, 25(3), 130.
24 Wang K, Wu J, Zeng H. Journal of Applied Polymer Science, 2006, 99(3), 1207.
25 Yang K, Yang Q, Li G, et al. Polymer Engineering & Science, 2007, 47(2), 95.
26 Chang L, Zhang Z, Ye L, et al. Wear, 2007, 262(5-6), 699.
27 Jiang B. Study on the properties and interfaces of filled polytetrafluoroethylene composites. Master's Thesis, Yangzhou University, China, 2017 (in Chinese).
江波. 填充型聚四氟乙烯复合材料的性能及界面研究. 硕士学位论文, 扬州大学, 2017.
28 Rosenkranz A, Costa H L, Baykara M Z, et al. Tribology International, 2021, 155, 106792.
29 Rosenkranz A, Liu Y, Yang L, et al. Applied Nanoscience, 2020, 10(9), 3353.
30 Scharf T, Prasad S. Journal of Materials Science, 2013, 48, 511.
[1] 董洪年, 杨明, 林天一, 陈沛然, 魏婷婷. 针刺密度对碳/碳复合材料力学行为影响的仿真分析[J]. 材料导报, 2025, 39(9): 23120170-6.
[2] 夏益健, 张宇, 张云升, 朱微微, 朱文轩. 磨细凝灰岩制备机制砂混凝土力学性能研究[J]. 材料导报, 2025, 39(9): 24030199-7.
[3] 钱如胜, 叶志波, 张云升, 赵儒泽, 孔德玉, 杨杨, 聂海波. 固碳强化再生粗骨料对其混凝土力学强度及体积稳定性的影响[J]. 材料导报, 2025, 39(9): 24020155-6.
[4] 燕伟, 李驰, 邢渊浩, 高瑜. 循环流化床多元固废粉煤灰基水泥胶砂固碳试验研究[J]. 材料导报, 2025, 39(9): 24010111-7.
[5] 陈港明, 王辉, 黄雪飞. 温轧对低铬FeCrAl合金显微组织及室温和高温力学性能的影响[J]. 材料导报, 2025, 39(9): 24060057-11.
[6] 陈继伟, 朱慧雯, 王海镔, 桑建权, 李艳花, 熊芬, 罗建新. 利用Hofmeister效应一步法制备离子导电耐低温强韧PVA水凝胶[J]. 材料导报, 2025, 39(9): 24050045-7.
[7] 陈永达, 胡智淇, 关岩, 常钧, 陈兵. 羟丙基甲基纤维素与硅烷偶联剂对磷酸镁基钢结构防火涂料性能的影响[J]. 材料导报, 2025, 39(8): 24010194-7.
[8] 雒亿平, 邢美光, 王德法, 易万成, 杨连碧, 薛国斌. 赤铁矿对偏高岭土基地聚物力学性能及反应机理的影响[J]. 材料导报, 2025, 39(8): 24040075-8.
[9] 李琼, 安宝峰, 苏睿, 乔宏霞, 王超群. 废玻璃粉透水混凝土物理性能及复合胶凝体系微观机理研究[J]. 材料导报, 2025, 39(8): 23100186-11.
[10] 程焱, 张弦, 苏志诚, 刘静, 吴开明. 具有TRIP效应的先进高强度钢力学性能及腐蚀行为的研究进展[J]. 材料导报, 2025, 39(8): 24020115-8.
[11] 徐焜, 黄子悦, 程云浦, 钱小妹. GNPs改性环氧复合材料等效弹性性能数值预测模型[J]. 材料导报, 2025, 39(8): 24040190-4.
[12] 董硕, 郑立森, 史奉伟, 王来, 刘哲. 钢纤维地聚物再生混凝土力学性能及强度指标换算[J]. 材料导报, 2025, 39(7): 24100219-8.
[13] 谢昭男, 陈军红, 黄西成, 邱勇. 橡胶的热老化力学性能与本构关系研究进展[J]. 材料导报, 2025, 39(7): 23120036-16.
[14] 段明翰, 覃源, 李阳, 耿凯强. 寒冷地区腈纶纤维混凝土力学性能及多层感知器神经网络预测[J]. 材料导报, 2025, 39(6): 23110143-9.
[15] 杨旭, 张天理, 朱志明, 徐连勇, 陈赓, 杨尚磊, 方乃文. 纳米颗粒对铝合金焊接凝固裂纹抑制机理及影响因素的研究进展[J]. 材料导报, 2025, 39(6): 24030070-10.
[1] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[2] WU Wei, CHEN Shiying, ZONG Mengjingzi. Dielectric Properties and Thermal Stability of Nano-Al2O3/Polyether Sulfone-epoxy Resin Composites[J]. Materials Reports, 2017, 31(20): 21 -24 .
[3] MO Peicheng, WU Yi, YU Wenlin, WANG Jilin, ZOU Zhengguang, ZHONG Shenglin, WANG Peng. In Situ Synthesis of PcBN Composites by cBN-Ti-Al-Si and Their Mechanical Property[J]. Materials Reports, 2018, 32(14): 2355 -2359 .
[4] HU Yaoqiang, CHEN Fajin, LIU Haining, ZHANG Huifang, WU Zhijian, YE Xiushen. Preparation of Poly(N-isopropylacrylamide) Hydrogel and Its Thermally Induced Aggregation Behavior[J]. Materials Reports, 2018, 32(14): 2491 -2496 .
[5] SONG Gang, CHI Jiayu, YU Jingwei, LIU Liming. Corrosion Behavior of Mg-steel Laser-TIG Hybrid Welding Joint[J]. Materials Reports, 2018, 32(16): 2773 -2777 .
[6] HUANG Hui, HAN Jianfeng, WANG Yishun, XIA Yang, ZHANG Jun, GAN Yongping, LIANG Chu, ZHANG Wenkui. Supercritical CO2 Assisting Cladding of LiMnPO4 on the Surface of Li[Li0.2-Mn0.54Co0.13Ni0.13]O2 and Its Electrochemical Properties[J]. Materials Reports, 2018, 32(23): 4072 -4078 .
[7] WANG Zhonghui, XIN Yong. Molecular Dynamics Simulation on the Relationship of Oxygen Diffusion and Polymer Chains Activity[J]. Materials Reports, 2019, 33(8): 1293 -1297 .
[8] CHANG Jingjing. Spin Coating Epitaxial Films[J]. Materials Reports, 2019, 33(12): 1919 -1920 .
[9] ZHUANG Xiaodong, LI Rongxing, YU Xiaohua, XIE Gang, HE Xiaocai, XU Qingxin. Preparation of Lithium Titanate Electrode Materials by Solid Phase Method[J]. Materials Reports, 2019, 33(16): 2654 -2659 .
[10] BIAN Guixue, CHEN Yueliang, ZHANG Yong, WANG Andong, WANG Zhefu. Equivalent Conversion Coefficient of Aluminum/Titanium Alloy Between Acidic NaCl Solution with Different Concentration and Water Based on Galvanic Corrosion Simulation[J]. Materials Reports, 2019, 33(16): 2746 -2752 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed