Please wait a minute...
材料导报  2025, Vol. 39 Issue (21): 24100243-7    https://doi.org/10.11896/cldb.24100243
  无机非金属及其复合材料 |
温度自适应双模态控温涂层用于混凝土结构热管理
关文勋1,2, 程冠之1,2,*, 李旺1,2, 吴瑞东1,2, 李大林1,2, 谢永江1,2, 栗少清1,2
1 中国铁道科学研究院集团有限公司铁道建筑研究所,北京 100081
2 高速铁路轨道系统全国重点实验室,北京 100081
Temperature Adaptive Dual-mode Temperature-control Coating for Thermal Management of Concrete Structures
GUAN Wenxun1,2, CHENG Guanzhi1,2,*, LI Wang1,2, WU Ruidong1,2, LI Dalin1,2, XIE Yongjiang1,2, LI Shaoqing1,2
1 Railway Engineering Research Institute, China Academy of Railway Sciences Co., Ltd., Beijing 100081, China
2 State Key Laboratory of High-Speed Railway Track System, Beijing 100081, China
下载:  全 文 ( PDF ) ( 21125KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 在无干预的条件下实现混凝土结构基础设施的温度自我调节对于保障结构安全稳定,内部环境舒适、减少能源消耗等具有重要意义。为此开发了一种由高反射底层和热致变色表层组成的双模态控温涂层以实现混凝土结构在低温下吸热保温和高温下反射降温。首先制备适宜的热致变色微胶囊及热致变色涂料,并将其与含金红石型钛白粉的高反射涂料分层涂覆在基材表面制备得到双模态控温涂层。研究了微胶囊掺量对涂层变色能力、力学性能、粘接性能、光泽度、太阳光调制能力的影响,验证了其在紫外老化及多次温度循环下的模态转换稳定性,探究了其在不同环境温度条件下对混凝土结构的控温性能。研究结果表明,20%微胶囊掺量的双模态控温涂层具有较佳的综合性能,涂层可以实现超80%的可见光光学调制和超30%的全波段太阳光调制,且经过2 000 h紫外老化和500次温度循环而不发生显著的调制能力衰减,可以有效实现混凝土结构的在复杂环境温度下的温度自适应智能热管理。这项研究展示了涂层材料对于与混凝土结构的智能热管理应用的显著潜力,并体现了探索可持续的温度适应性解决方案的重要性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
关文勋
程冠之
李旺
吴瑞东
李大林
谢永江
栗少清
关键词:  微胶囊  热管理  涂层  热致变色  太阳光调制    
Abstract: Achieving temperature self-regulation of concrete structure infrastructure without intervention is of great significance for ensuring structural safety and stability, comfortable internal environment, and reducing energy consumption. Therefore, a dual-mode temperature control coating consisting of a bottom high reflection layer and a surface thermochromic layer have been developed to achieve heat absorption and insulation of concrete structures at low temperatures and reflection cooling at high temperatures. In this work, suitable thermochromic microcapsules and coa-tings were first prepared, and then a double-layer dual-mode temperature control coating was fabricated with thermochromic coatings and high reflectivity coatings containing rutile titanium dioxide. The influence of microcapsule dosage on coating color changing ability, mechanical properties, adhesive properties, glossiness, and solar modulation ability was studied. The modal conversion stability under UV aging and temperature cycles was verified, and the temperature control performance of the coating on concrete structures under different environmental temperature was explored. The results show that a dual-mode temperature control coating with 20% microcapsule content has satisfied comprehensive performance. The coating can achieve over 80% visible light modulation and over 30% solar light modulation. After 2 000 hours of UV aging or 500 temperature cycles, there is no significant attenuation of modulation ability. The coating can effectively achieve temperature adaptive intelligent thermal ma-nagement of concrete structures in complex environmental temperatures. It demonstrates the significant potential of coating materials for intelligent thermal management applications in concrete structures and emphasizes the importance of exploring sustainable temperature adaptive solutions.
Key words:  microcapsule    thermal management    coating    thermochromic    solar modulation
出版日期:  2025-11-10      发布日期:  2025-11-10
ZTFLH:  U214.6  
基金资助: 中国铁道科学研究院集团有限公司科研开发基金(2022YJ100)
通讯作者:  *程冠之,副研究员、硕士研究生导师,国铁集团专业带头人,现就职于中国铁道科学研究院集团有限公司铁道建筑研究所。主要从事铁路工程材料的应用基础研究与应用研究。chengguanzhi@163.com   
作者简介:  关文勋,中国铁道科学研究院集团有限公司铁道建筑研究所副研究员,目前主要从事铁路工程用高分子材料的研究、开发及应用工作。
引用本文:    
关文勋, 程冠之, 李旺, 吴瑞东, 李大林, 谢永江, 栗少清. 温度自适应双模态控温涂层用于混凝土结构热管理[J]. 材料导报, 2025, 39(21): 24100243-7.
GUAN Wenxun, CHENG Guanzhi, LI Wang, WU Ruidong, LI Dalin, XIE Yongjiang, LI Shaoqing. Temperature Adaptive Dual-mode Temperature-control Coating for Thermal Management of Concrete Structures. Materials Reports, 2025, 39(21): 24100243-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24100243  或          https://www.mater-rep.com/CN/Y2025/V39/I21/24100243
1 Hu R P, Zhang R L, Wang M S, et al. Bulletin of the Chinese Ceramic Society, 2018, 6(37), 2042(in Chinese).
胡锐鹏, 张戎令, 王朦诗, 等. 硅酸盐通报, 2018, 6(37), 2042.
2 Guo X X, An M Z, Wang Y, et al. Journal of Building Materials, 2023, 26(8), 845(in Chinese).
郭献戌, 安明喆, 王月, 等. 建筑材料学报, 2023, 26(8), 845.
3 Xu B, Long L S, Meng X C, et al. ACTA Energiae Solaris Sinica, 2012, 4(33), 670(in Chinese).
徐斌, 龙林爽, 孟宪春, 等. 太阳能学报, 2012, 4(33), 670.
4 Li D H W, Yang L, Lam J C. Energy, 2012, 42(1), 103.
5 Geng X, He Y, Han N, et al. Energy and Buildings, 2021, 230, 110528.
6 Emmanuel S, Valentina S, Petra G, et al. Energy and Buildings, 2020, 217, 2.
7 Churkina G, Organschi A, Reyer C P O, et al. Nature Sustainability, 2020, 3, 269.
8 Pavanello F, De Cian E, Davide M, et al. Nature Communications, 2021, 12, 6460.
9 Biardeau L T, Davis L W, Gertler P, Wolfram C. Nature Sustainability, 2020, 3, 25.
10 Cuce E, Cuce P M, Wood C J, et al. Renewable and Sustainable Energy Reviews, 2014, 34, 273.
11 Sandin O, Nordin J, Jonsson M, et al. Journal of Coatings Technology and Research, 2017, 14(4), 817.
12 Lu X, Xu P, Wang H, et al. Renewable and Sustainable Energy Reviews, 2016, 65, 1079.
13 Su W, Darkwa J, Kokogiannakis G, et al. Renewable and Sustainable Energy Reviews, 2015, 48, 373.
14 Nazir H, Batool M, Bolivar O F J, et al. International Journal of Heat and Mass Transfer, 2019, 129, 491.
15 Schiavoni S, Alessandro D F, Bianchi F, et al. Renewable and Sustai-nable Energy Reviews, 2016, 62, 988.
16 Hu Y, Ma H, Wu M, et al. Nature Communications, 2022, 13, 4335.
17 Wang Z, Bo Y, Bai P, et al. Science, 2023, 382, 1291.
18 Wu M, Shao Z, Zhao N, et al. Science, 2023, 382, 1379.
19 Alberghini M, Hong S, Lozano L M, et al. Nature Sustainability, 2021, 4, 715.
20 Liao Q, Zhang P, Yao H, et al. Advanced Science, 2020, 7, 1903125.
21 Zhang Y X, Zhai X Q. CIESC Journal, 2019, 70(9), 3537(in Chinese).
张宇轩, 翟晓强. 化工学报, 2019, 70(9), 3537.
22 Al-Obaidi K M, Ismail M, Rahman A M A. Frontiers of Architectural Research, 2014, 3, 283.
23 Liu X, Chen F, Li Y, et al. Advanced Materials, 2022, 34, 2203137.
24 Yao H, Liao Q, Cheng H, et al. Nano Research, 2024, 17, 112.
25 Geng H, Zhao K, Zhou J, et al. Angewandte Chemie International Edition, 2018, 57, 15435.
26 Raman A P, Anoma M A, Zhu L, et al. Nature, 2014, 515, 540.
27 Zhu B, Li W, Zhang Q, et al. Nature Nanotechnology, 2021, 16, 1342.
28 Li W, Shi Y, Chen Z, et al. Nature Communication, 2018, 9, 4240.
29 Cai L, Song A Y, Li W, et al. Advanced Materials, 2018, 30, e1802152.
30 Athmani W, Sriti L, Dabaieh M, et al. Buildings, 2022, 13, 21.
31 Leroy A, Bhatia B, Kelsall C C, et al. Science Advances, 2019, 5, eaat9480.
32 Zhu L, Raman A P, Fan S. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 12282.
33 Geng X, Li W, Yin Q, et al. Energy, 2018, 159, 857.
34 Yang G K, Jiang G S, Liu T L, et al. Materials Reports, 2021, 35(2), 2032(in Chinese).
杨国坤, 蒋国盛, 刘天乐, 等. 材料导报, 2021, 35(2), 2032.
35 Sun J M, Liang Z H, Zhao L, et al. Materials Reports, 2018, 32(32), 134(in Chinese).
孙俊梅, 梁子辉, 赵丽, 等. 材料导报, 2018, 32(32), 134.
36 Kumar S, Maury F, Bahlawane N, et al. Materials Today Physics, 2017, 2, 1.
37 Zhang Y, Wu D, Liao D, et al. Composites Part A: Applied Science and Manufacturing, 2023, 172, 107622.
38 Peng Y, Cui Y. Joule, 2020, 4, 724.
39 He Y, Li W, Han N, et al. Applied Energy, 2019, 247, 615.
40 Liu H J, Jiang T, Wang F J, et al. Energy and Buildings, 2021, 251, 111374.
41 Garshasbi S, Santamouris M. Solar Energy Materials and Solar Cells, 2019, 191, 21.
[1] 姚洁丽, 伍小波, 刘紫鹏, 唐繁荣, 廖常平. 锂离子电池负极极片干燥开裂机理与影响因素研究综述[J]. 材料导报, 2025, 39(9): 24070200-7.
[2] 王健, 张永, 高津. 风电机组叶片涂层沙蚀效应的风洞试验研究[J]. 材料导报, 2025, 39(9): 23120009-5.
[3] 韩帅文, 朱可晟, 刘长洋, 刘子良, 卞刘振, 杨礼林. 固体氧化物电池金属连接体锰钴涂层材料研究进展[J]. 材料导报, 2025, 39(8): 23100253-6.
[4] 刘同旭, 王子君, 张新颖, 陈晓明, 朱广林, 郭策安. 电火花沉积工艺的研究现状和发展趋势[J]. 材料导报, 2025, 39(8): 24030203-9.
[5] 俞伟元, 景瑞, 董鹏飞, 吴保磊, 李扬, 强潇. 高速激光熔覆Fe基非晶涂层裂纹及组织分析[J]. 材料导报, 2025, 39(7): 24030107-6.
[6] 叶利亚, 陈宏飞, 杨光, 高彦峰. V2O5对β-(Ni,Pt)Al涂层热腐蚀抗性的影响[J]. 材料导报, 2025, 39(7): 24030041-4.
[7] 高峰, 郭策安, 张健. 身管内壁铬钽及其合金涂层研究进展[J]. 材料导报, 2025, 39(7): 24010200-8.
[8] 范锡宇, 赵珍, 马剑平, 周雪琴. 多层结构绿色植被高光谱伪装材料的设计与制备[J]. 材料导报, 2025, 39(7): 24030086-8.
[9] 王喆锦, 王丽爽, 麻忠宇, 董会, 姚建洮, 周勇. 高温热暴露对等离子喷涂YSZ孔隙结构和力学性能的影响[J]. 材料导报, 2025, 39(4): 23110217-7.
[10] 张业飞, 江海涛, 田世伟, 张思远, 李冲. TiAl基合金高温防护及热障涂层体系研究进展[J]. 材料导报, 2025, 39(4): 24020147-10.
[11] 蒋曜年, 刘欢, 钟镇涛, 何泽乾, 毛卫国, 戴翠英, 张有为, 刘平桂. SiCN@Fe复合吸波涂层高温原位拉伸测试分析[J]. 材料导报, 2025, 39(3): 23050156-5.
[12] 温强, 李向成, 花银群, 关庆丰, 蔡杰. 强流脉冲电子束表面改性技术及其在热障涂层改性中的研究进展[J]. 材料导报, 2025, 39(3): 23090070-11.
[13] 王振峰, 伞宏赡, 田萌萌, 徐志超, 关意佳, 杨志波. 植入体表面光响应抗菌涂层的研究进展[J]. 材料导报, 2025, 39(3): 23100105-9.
[14] 陈嘉乐, 张达, 解志鹏, 刘轶昌, 杨斌, 梁风. 电弧等离子体制备过渡金属氮化物及应用[J]. 材料导报, 2025, 39(21): 24100013-12.
[15] 万福程, 梁继超, 于爱华, 张嘉振, 路新. 钛涂层制备与后处理工艺及应用研究进展[J]. 材料导报, 2025, 39(2): 24010131-9.
[1] JIN Qinglin, WANG Yang, CAO Lei, SONG Qunling. Effect of Nitriding in Mushy Zone on the Nitrogen Content and Solidification Transformation of Cr10Mn9Ni0.7 Alloy[J]. Materials Reports, 2018, 32(4): 579 -583 .
[2] WANG Shengmin, ZHAO Xiaojun, HE Mingyi. Research Status and Development of Mechanical Plating[J]. Materials Reports, 2017, 31(5): 117 -122 .
[3] HE Yuandong, SUN Changzhen, MAO Weiguo, MAO Yiqi, ZHANG Honglong, CHEN Yanfei, PEI Yongmao, FANG Daining. Measurement of Transverse Piezoelectric Coefficients of Pb(Zr0.52Ti0.48)O3 Thin Films by a Mechano-electrical Multiphysics Coupling, Bulge Test Method[J]. Materials Reports, 2017, 31(15): 139 -144 .
[4] TAO Lei, ZHENG Yunwu,DI Mingwei, ZHANG Yanhua, ZHENG Zhifeng. Preparation of Porous Carbon Nanofiber from Liquid Phenolic Resin and Its Characterization[J]. Materials Reports, 2017, 31(10): 101 -106 .
[5] SU Lan, ZHANG Chubo, WANG Zhen, MI Zhenli. Finite Element Simulation of Electromagnetic Induction Heating in Hot Metal Gas Forming[J]. Materials Reports, 2017, 31(24): 182 -177 .
[6] QI Yaping, LUO Faliang, WANG Kezhi, SHEN Zhiyuan, WU Xuejian, WANG Diran. Effect of TMC-300 on the Performance of PLLA/PPC Alloy[J]. Materials Reports, 2018, 32(10): 1672 -1677 .
[7] DU Min, SONG Dian, XIE Ling, ZHOU Yuxiang, LI Desheng, ZHU Jixin. Electrospinning in Rechargeable Ion Batteries for High Efficient Energy Storage[J]. Materials Reports, 2018, 32(19): 3281 -3294 .
[8] LIU Xiao, XU Qian, LAI Guanghong, GUAN Jianan, XIA Chunlei, WANG Ziming, CUI Suping. Application Performances and Mechanism of Polycarboxylic Acid in Different Comb-bonded Structures in High-performance Concrete[J]. Materials Reports, 2018, 32(22): 4011 -4015 .
[9] ZHANG Di, YANG Di, XU Cui, ZHOU Riyu, LI Hao, LI Jing, WANG Peng. Study on Mechanism of Highly Effective Adsorption of Bisphenol F by Reduced Graphene Oxide[J]. Materials Reports, 2019, 33(6): 954 -959 .
[10] LIU Hongyin, YANG Hongyu, CHEN Mingfeng. Impact of Isocyanate Index on Flame Retardancy, Thermal Stability andCombustion Behaviors of Rigid Polyurethane Foam[J]. Materials Reports, 2019, 33(12): 2071 -2075 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed