Please wait a minute...
材料导报  2025, Vol. 39 Issue (20): 24100155-8    https://doi.org/10.11896/cldb.24100155
  金属与金属基复合材料 |
钨及钨合金基体热阴极的研究进展
袁志谦1,2,3, 周增林1,2,3,*, 李艳2, 何学良2, 陈文帅1,2,3, 张婉婷1,2,3
1 有研科技集团有限公司智能传感功能材料国家重点实验室,北京 100088
2 有研工程技术研究院有限公司,北京 101407
3 北京有色金属研究总院,北京 100088
Research Progress of Tungsten and Tungsten Alloy Matrix Hot Cathode
YUAN Zhiqian1,2,3, ZHOU Zenglin1,2,3,*, LI Yan2, HE Xueliang2, CHEN Wenshuai1,2,3, ZHANG Wanting1,2,3
1 State Key Laboratory of Advanced Materials for Smart Sensing, GRINM Group Co., Ltd., Beijing 100088, China
2 GRIMAT Engineering Institute Co., Ltd., Beijing 101407, China
3 General Research Institute for Non-ferrous Metals, Beijing 100088, China
下载:  全 文 ( PDF ) ( 9276KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 热电子发射研究了百余年,目前新型电子器件的快速发展导致对具有增强发射特性(如更高的电流密度,更均匀的发射,更低的工作温度和更长的使用寿命)的阴极需求激增。本文综述了近几十年来热阴极的研究进展,并详细讨论了各种热阴极的发射特性与其组成、结构和制造方法之间的关系,概述了固固掺杂法、固液掺杂法、液液掺杂法等基体制备方法的优缺点以及其对阴极发射性能的影响。此外,还梳理了钡钨阴极、覆膜阴极、混合基阴极和钪系阴极的发射机制,展示了该领域的最新研究成果,其中钪系阴极尤其是混合基顶层含钪阴极由于其优异的发射性能而被认为是最具发展潜力的阴极体系。尽管其制备方法多种多样,但适用于热阴极的高均匀、高可靠钨及钨合金基体制造仍然存在挑战。钨合金基体在发射过程中的微观结构变化尚不明晰,发射机理解释存在局限性,均有待探明和扩充。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
袁志谦
周增林
李艳
何学良
陈文帅
张婉婷
关键词:  扩散阴极  混合基阴极  发射机理  钪钨  掺杂    
Abstract: Thermal electron emission has been studied more than 100 years, recently, the rapid development of electronic devices has led to a cathodic demand surge with enhanced emission properties (such as higher current density, more uniform launch, lower operating temperature and longer service life). This paper reviews the research progress of the thermionic cathode in recent decades, and the relationship between the emission characteristics and composition, structure, and method of diffusion cathode is discussed in detail. The advantages and disadvantages of matrix preparation methods such as solid-solid doping, solid-liquid doping, liquid-liquid doping and spray drying are introduced, and their effects on cathode emission performance are summarized in the same. In addition, the emission mechanism of barium tungsten cathode, coating cathode, mixed-matrix cathode, and scandium cathode, as well as the latest research results in this field have been showed, where the scandium cathode, especially the mixed-matrix top-layer scandium cathode, is considered to be the most valuable cathode due to its outstanding emission perfor-mance. Despite the variety of manufacturing methods, there are still challenges in manufacturing a cathode matrix with high uniformity and high reliability suitable for diffusion cathodes. The microstructure evolution of tungsten alloy matrix during the emission process is unclear, and the explaining of the emission mechanism has limitations, all of which need to be explored and expanded.
Key words:  diffusion cathode    mixed-matrix cathode    emission mechanism    scandium tungsten    doping
发布日期:  2025-10-27
ZTFLH:  TG146.4  
基金资助: 国家自然科学基金(U2341209);“十四五”预先研究项目(31512010602)
通讯作者:  *周增林,博士,北京有色金属研究总院正高级工程师、博士研究生导师。主要从事真空电子器件用热阴极材料、先进难熔金属材料及强韧化等的研究。zhouzenglin@grinm.com   
作者简介:  袁志谦,北京有色金属研究总院博士研究生,在周增林教授的指导下进行研究工作。目前主要研究领域为真空电子器件用热阴极材料。
引用本文:    
袁志谦, 周增林, 李艳, 何学良, 陈文帅, 张婉婷. 钨及钨合金基体热阴极的研究进展[J]. 材料导报, 2025, 39(20): 24100155-8.
YUAN Zhiqian, ZHOU Zenglin, LI Yan, HE Xueliang, CHEN Wenshuai, ZHANG Wanting. Research Progress of Tungsten and Tungsten Alloy Matrix Hot Cathode. Materials Reports, 2025, 39(20): 24100155-8.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24100155  或          https://www.mater-rep.com/CN/Y2025/V39/I20/24100155
1 Shang J, Yang X, Wang Z, et al. IEEE Transactions on Electron Devices, 2020, 67(6), 2580.
2 Roquais J M, Vancil B, Green M. Modern Developments in Vacuum Electron Sources, 2020, 135, 33.
3 Gao J Y, Chu F H, Wang J S, et al. Applied Surface Science, 2022, 581, 1.
4 Zheng Q, Zheng H, Ya F L, et al. Ceramics International, 2021, 47(2), 1.
5 Liu X T, Vancil B K, Beck M J, et al. Materials, 2019, 12(4), 636.
6 Lemmens H, Jansen M, Loosjes R. Phillips Technical Review, 1950, 11(12), 341.
7 Zhou Z L, He X L, Li Y, et al. Rare Metal Materials and Engineering, 2019, 48(7), 2386(in Chinese).
周增林, 何学良, 李艳, 等. 稀有金属材料与工程, 2019, 48(7), 2386.
8 Liu J C, Shao W S, Zhang K. Acta Electronica Sinica, 2023, 51(7), 1977(in Chinese).
刘继琛, 邵文生, 张珂. 电子学报, 2023, 51(7), 1977.
9 Levi R. Journal of Applied Physics, 1955, 26(5), 639.
10 Shang J H, Yang X Y, Sun D P, et al. Acta Physica Sinica, 2022, 71(4), 10(in Chinese).
尚吉花, 杨新宇, 孙大鹏, 等. 物理学报, 2022, 71(4), 10.
11 Cui Y T, Wang J S, Liu W. Journal of Beijing University of Technology, 2013, 39(9), 1420(in Chinese).
崔云涛, 王金淑, 刘伟. 北京工业大学学报, 2013, 39(9), 1420.
12 Zhang H W, Bai Z G, Yu S J, et al. Vacuum Electronic Technology, 2002(3), 70(in Chinese).
张红卫, 白振纲, 俞世吉, 等. 真空电子技术, 2002(3), 70.
13 Zalm P, Vanstrat A. Philips Technical Review, 1966, 27(3-4), 69.
14 Cortenraad H R. Applied Surface Science, 2000, 191(1), 153.
15 Wang J, Yang Y, Wang Y, et al. Tungsten, 2019, 1(1), 91.
16 Kapustin V I, Li I P, Moskalenko S O, et al. Inorganic Materials-Applied Research, 2021, 12(5), 1175.
17 Liu Y, Zhang M, et al. Applied Surface Science, 2005, 251(1), 133.
18 Swartzentruber P D, Detisch M J, Balk T J. Journal of Vacuum Science & Technology A, 2015, 33(2), 12.
19 Jian J W, Jing L L, Yong B F, et al. Journal of Materials Science Materials in Electronics, 2018, 29(19), 1.
20 Zhang R, Wang X, Luo J. In: Conference Record of the 2023 24th International Vacuum Electronics Conference (IVEC). Chengdu, China, 2023, pp. 1.
21 Shen C Y, Qiu T, Li X Y. Materials Reports, 2005, 19(3), 25(in Chinese).
沈春英, 丘泰, 李晓云. 材料导报, 2005, 19(3), 25.
22 Falce L R. In: Conference Record of the 1983 Electron Devices Meeting. Washington, USA, 1983, pp. 448.
23 Fang H X, Liu W, Yang Y F, et al. Rare Metal Materials and Engineering, 2024, 53(6), 1718.
24 Lai C, Wang J, Zhou F, et al. Applied Surface Science, 2018, 427, 874.
25 Wang C J. Research on mixed metal based cathodes. Master’s Thesis, Tsinghua University, China, 2010 (in Chinese).
王传璟. 混合金属基阴极的研制. 硕士学位论文, 清华大学, 2010.
26 Yin S Y, Ren F, Lu Z P, et al. Journal of Electronics & Information Technology, 2018, 40(10), 2535.
27 Zhou F, Chen L, Wang X, et al. In: Conference Record of the 2015 IEEE International Vacuum Electronics Conference (IVEC). Beijing, China, 2015, pp. 1.
28 Seif M N, Zhou Q F, Liu X T, et al. IEEE Transactions on Electron Devices, 2022, 69(7), 3523.
29 Wang M H, Hu K, Wu R J, et al. Advanced Powder Technology, 2024, 34(9), 103.
30 Gao J Y, Liu P, Wang J S, et al. Acta Materialia, 2023, 261, 18.
31 Zhang R Q, Wang X X, Ren F. IEEE Transactions on Electron Devices, 2024, 29(7), 1983.
32 Avraam I F, Anna I S, Irina V J. U. S. patent, US3358178A, 1967.
33 Stratum A J A V, Os J G V, Blatter J R, et al. U. S. patent, US04007393A, 1977.
34 Hasker J, Esdonk J V, Crombeen J E. Applied Surface Science, 1986, 26(2), 173.
35 Yamamoto S, Sasaki S, Taguchi S, et al. Applied Surface Science, 1988, 33(4), 1200.
36 Gartner G, Geittner P, Lydtin H, et al. Applied Surface Science, 1997, 111(2), 11.
37 Cheng Y, Sun Y, Zhou Y Z. Journal of Refractory Metals and Hard Materials, 2022, 105(4), 4363.
38 Wang Y M, Wang J, Liu W, et al. IEEE Transactions on Electron Devices, 2007, 54(5), 1061.
39 Yin S Y, Lyu X P, Ren F, et al. Journal of Electronics & Information Technology, 2021, 43(10), 3058(in Chinese).
阴生毅, 吕昕平, 任峰, 等. 电子与信息学报, 2021, 43(10), 3058.
40 Wang X R, Wei S Z, Zhang C, et al. Journal of Materials Science, 2024, 59(4), 1635.
41 Liu X T, Vancil, B K, Durham D B, et al. IEEE Transactions on Electron Devices, 2023, 70(6), 2876.
42 Yu X B, Xiao J, Guo S Y, et al. Nonferrous Metals Science and Engineering, 2021, 12(3), 35(in Chinese).
喻相标, 肖杰, 郭少毓, 等. 有色金属科学与工程, 2021, 12(3), 35.
43 Seif M, Balk T J, Beck M J. In: Conference Record of the 23st IEEE International Conference on Vacuum Electronics (IVEC). Monterey, 2022, pp. 161.
44 Gu X. Study on a new scandium containing diffusion cathode. Master’s Thesis, Beijing University of Technology, China, 2005(in Chinese).
古昕. 新型含钪扩散阴极的研究. 硕士学位论文, 北京工业大学, 2005.
45 Zhu K, Jia H, Huang J, et al. Metals, 2024, 14(4), 427.
46 Zhu X C, Wang Y M, Liu W, et al. Journal of Vacuum Science and Technology, 2015, 35(12), 1431(in Chinese).
朱晓策, 王亦曼, 刘伟, 等. 真空科学与技术学报, 2015, 35(12), 1431.
47 Wang C N, Zhou X Y, Jiang T Q, et al. IEEE Transactions on Electron Devices, 2024, 28, 460.
48 Bai H H, Briot N J, Beck M J, et al. Materials Characterization, 2024, 212, 19.
49 Vancil B, Ohlinger W L, Green M C, et al. IEEE Transactions on Electron Devices, 2018, 65(6), 1.
50 Zhao J, Gamzina D, Li N, et al. IEEE Transactions on Electron Devices, 2012, 59(6), 1792.
51 Pagaud F, Dolique V, Claire N, et al. Plasma Sources Science & Technology, 2023, 32(11), 1361.
52 Wang J S, Zhou M L. Electronic emission materials, Beijing Institute of Technology Press, China, 2008, pp. 9 (in Chinese).
王金淑, 周美玲. 电子发射材料, 北京工业大学出版社, 2008, pp. 9.
53 Wang J S, Zhou M L. Electronic emission materials, Beijing Institute of Technology Press, China, 2008, pp. 29 (in Chinese).
王金淑, 周美玲. 电子发射材料, 北京工业大学出版社, 2008, pp. 29.
54 Alsoud A, Mousa M S, Abuamr A M, et al. Jordan Journal of Physics, 2024, 17(2), 187.
55 Zhang X, Hua Y, Wang J, et al. IEEE Transactions on Electron Devices, 2022, 68(2), 829.
56 Jacobs R, Morgan D, Booske J. APL Materials, 2017, 5(11), 1.
57 Gartner G. Vacuum on Forschung Und Praxis, 2022, 34(1), 24.
58 Liu W, Hu Z K, Li S L, et al. Powder Metallurgy Technology, 2023, 41(3), 199.
59 Muller W. In: Conference Record of the 1991 International Electron Devices Meeting. Washington, 1991, pp. 399.
60 Balk, John T, Beck, et al. Journal of Vacuum Science & Technology A:Vacuum Surfaces & Films, 2017, 35(2), 1.
61 Li W C, Roberts S, Balk T J. In: Conference Record of the 10th IEEE International Vacuum Electronics Conference. Angelicum University, 2009, pp. 177.
62 Shang J H, Yang X Y, Sun D P, et al. IEEE Transactions on Plasma Science, 2022, 50(4), 1076.
63 Ao B, Zheng Q, Yan R, et al. In: Conference Record of the 2023 24th International Vacuum Electronics Conference (IVEC). Chengdu, China, 2023, pp.1.
64 Liu W, Li J H, Wang J S, et al. Rare Metal Materials and Engineering, 2020, 49(5), 1766.
65 Raju R S, Maloney C E. IEEE Transactions on Electron Devices, 1994, 41(12), 2460.
66 Wang M H, Hu K, Wu R J, et al. Advanced Powder Technology, 2023, 34(9), 1350.
67 Wright D A, Woods J. Proceedings of the Physical Society Section B, 1952, 65(2), 134.
68 Jacobs R M, Booske J H. Physical Review B, 2012, 86(5), 122.
69 Liu X T, Zhou Q F, Maxwell T L, et al. Materials Characterization, 2018, 148, 188.
70 Roquais J M, Vancil B, Green M. Topics in Applied Physics, 2020, 135, 33.
71 Wang J S, Cui Y T, Liu W, et al. IEEE Transactions on Electron Devices, 2015, 62(5), 1635.
72 Mantica A M, Detisch M J, Balk T J, et al. IEEE Transactions on Electron Devices, 2023, 70(6), 2864.
73 Maloney C E, Zhang H L. Applications of Surface Science, 1985, 21(5), 15.
74 Zhou S X, Liang S S, Guo Y C, et al. Materials Characterization, 2023, 195(5), 15.
75 Lesny G, Forman R. IEEE Transactions on Electron Devices, 2010, 37(12), 2595.
76 Mroz M V, Kordesch M E, Sadowski J T, et al. Journal of Vacuum Science and Technology B, 2020, 38(2), 161.
77 Gartner G. Journal of Surface Science and Nanotechnology, 2024, 22(2), 179.
78 Seif M N, Balk T J, Beck M J. Materials, 2022, 13(22), 5149.
79 Kordesch M E, Vaughn J M, Wan C, et al. Journal of Vacuum Science & Technology B, 2022, 29(4), 4.
[1] 韩帅文, 朱可晟, 刘长洋, 刘子良, 卞刘振, 杨礼林. 固体氧化物电池金属连接体锰钴涂层材料研究进展[J]. 材料导报, 2025, 39(8): 23100253-6.
[2] 刘宇, 张健, 庞小通, 周小杰, 卢先正, 陈小敏, 李佳豪, 彭平. 镧镍系合金对氢化镁组织结构与储氢性能的影响及机理[J]. 材料导报, 2025, 39(8): 24040039-6.
[3] 陈旭, 廖静, 谭理, 李海进. 金属卤化物钙钛矿材料自掺杂研究进展[J]. 材料导报, 2025, 39(7): 24020097-9.
[4] 鲍艳, 谢梦爽, 郭茹月, 张婧. VO2智能调温涂层的研究进展[J]. 材料导报, 2025, 39(7): 24030036-7.
[5] 龙武剑, 唐懿, 郑淑仪, 何闯. 氮掺杂石墨烯量子点作为新型碳钢缓蚀剂:从设计到机理[J]. 材料导报, 2025, 39(7): 23100196-10.
[6] 李门, 李天鹏, 郭爱强, 刘建国, 高欣宝. vG和Cu/vG体系对H2O吸附的第一性原理研究[J]. 材料导报, 2025, 39(6): 23120052-5.
[7] 李辉, 郭文尧, 肖强强, 王梦千, 杜守勤, 李国宁, 李诗杰, 郭敏, 马晓玲. Zn掺杂ZIF-67构筑光热-相变储能一体化材料的性能研究[J]. 材料导报, 2025, 39(6): 23100236-7.
[8] 赵伟馨, 彭孔浩, 武玥, 郭文, 高鹤然, 张凌燕, 彭微, 李淑荣, 孟佩俊. PEI-NaGdF4:Yb3+,Tm3+稀土掺杂上转换纳米材料的制备及性能[J]. 材料导报, 2025, 39(5): 24120175-7.
[9] 陈阿青, 梁轻. Nb掺杂二氧化钛纳米管电子结构第一性原理计算[J]. 材料导报, 2025, 39(4): 23100185-6.
[10] 邹振羽, 刘伟, 李朋娟, 李晓丽. 共活化法制备等级多孔炭材料及其储能性能研究[J]. 材料导报, 2025, 39(3): 23080193-7.
[11] 王晴晴, 李地, 周家峰, 孟维利, 朱安康, 邵静. 稀土元素掺杂在提升热电材料性能中的研究进展[J]. 材料导报, 2025, 39(20): 25070127-8.
[12] 彭朝银, 姚耀春, 李银, 陈秋霖, 张克宇, 胡均贤, 张少泽. 杂原子掺杂磷酸铁锂碳包覆层的改性研究进展[J]. 材料导报, 2025, 39(19): 24080184-8.
[13] 徐照英, 苏永要, 张腾飞, 王锦标, 吴杰. 钛合金表面硅铜共掺杂类金刚石复合薄膜微观结构与摩擦学性能研究[J]. 材料导报, 2025, 39(19): 24080234-6.
[14] 夏梓文, 梁平, 冯扬, 杨伟业, 彭鸿雁, 赵世华. 不同水热制备条件对ZnO纳米材料性能的影响[J]. 材料导报, 2025, 39(16): 24070151-12.
[15] 许思维, 王荣平, 王训四. 高分辨X射线光电子能谱研究GexGa8Se92-x玻璃的结构[J]. 材料导报, 2025, 39(16): 24080210-6.
[1] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[2] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[3] JIA Zhihong, WENG Yaoyao, DING Lipeng, CHENG Tao, LIU Yingying, LIU Qing. Sn Microalloying for Aluminum Alloys: Strengthening Effects and Mechanisms[J]. Materials Reports, 2017, 31(9): 123 -127 .
[4] WANG Ru, ZHANG Shaokang, WANG Gaoyong. Influence and Mechanism of Mineral Admixtures on Setting and Hardening of Styrene-Butadiene Copolymer/Cement Composite Cementitious Material[J]. Materials Reports, 2017, 31(24): 69 -73 .
[5] DING Yutian, DOU Zhengyi, GAO Yubi, GAO Xin, LI Haifeng, LIU Dexue. In-situ Observation of Solidification Process of GH3625 Superalloy at Different Cooling Rates[J]. Materials Reports, 2017, 31(24): 150 -155 .
[6] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[7] LIU Guoyi, LIU Yuanjun, ZHAO Xiaoming. A Study on Protecting Efficiency to the Radiative Heat of the Outer Fabric for the Fire Proximity Suits[J]. Materials Reports, 2017, 31(22): 116 -120 .
[8] ZHANG Wangxi, WANG Yanzhi, LIANG Baoyan, LI Qiquan, LUO Wei, SUN Changhong, CHENG Xiaozhe, SUN Yuzhou. Review on the Development of Nanodiamonds Used as Functional Materials[J]. Materials Reports, 2018, 32(13): 2183 -2188 .
[9] YANG Fang, ZHANG Long, YU Kun, QI Tianjiao, GUAN Debin. Recent Advances in Humidity Sensitivity of Graphene[J]. Materials Reports, 2018, 32(17): 2940 -2948 .
[10] TIAN Yaqiang, LI Wang, ZHENG Xiaoping, WEI Yingli, SONG Jinying, CHEN Liansheng. Application of Alloy Elements in Quenching and Partitioning Steel:an Overview[J]. Materials Reports, 2019, 33(7): 1109 -1118 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed