Please wait a minute...
材料导报  2025, Vol. 39 Issue (20): 24100122-6    https://doi.org/10.11896/cldb.24100122
  无机非金属及其复合材料 |
碱激发硅藻土/铝矾土胶凝材料的制备与性能研究
张爱, 袁浩然, 葛勇*
哈尔滨工业大学交通科学与工程学院,哈尔滨 150090
Preparation and Properties of Alkali-activated Diatomite/Bauxite Cementitious Materials
ZHANG Ai, YUAN Haoran, GE Yong*
School of Transportation Science and Engineering, Harbin Institute of Technology, Harbin 150090, China
下载:  全 文 ( PDF ) ( 14886KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 碱激发材料因其低碳排放和优异的力学性能,已成为新型建筑材料领域的重要研究方向。以硅藻土和铝矾土为原料,系统研究了不同煅烧温度对硅藻土活化效果的影响,获得最佳煅烧温度,然后研究最佳煅烧温度下不同活化硅藻土掺量、水胶比、碱当量和激发剂模数等对碱激发硅藻土/铝矾土胶凝材料力学性能和微观结构的影响。结果表明,硅藻土在600 ℃下煅烧2 h后具有最佳火山灰活性。碱激发体系中,硅藻土与铝矾土质量比为4∶6、水胶比为0.4、碱当量为6%、激发剂模数为1.0时,材料表现出最佳的抗压强度和抗折强度。正交试验分析表明,胶凝材料力学强度随水胶比增加而降低,随硅藻土掺量、碱当量和模数的增加呈先升后降的趋势。XRD与SEM分析显示,材料中的莫来石和N-A-S-H凝胶结晶度较高,显著提升了基体的致密性,减少了裂纹的产生,显著增强了材料的力学性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张爱
袁浩然
葛勇
关键词:  碱激发材料  硅藻土  铝矾土  火山灰活性  N-A-S-H凝胶  力学性能    
Abstract: Alkali-activated materials (AAMs) have become a key research focus in the field of novel building materials due to their low carbon emissions and excellent mechanical properties. In this study, diatomite and bauxite were used as raw materials to systematically investigate the effect of different calcination temperatures on the activation of diatomite, as well as the impact of various diatomite content, water-to-binder ratio, alkali equivalent, and activator modulus on the mechanical properties and microstructure of alkali-activated diatomite/bauxite cementitious materials. The results indicate that diatomite exhibited optimal pozzolanic activity after calcination at 600 ℃ for 2 h. In the alkali-activated system, the mate-rial shows the highest compressive and flexural strength when the diatomite-to-bauxite ratio is 4∶6, the water-to-binder ratio is 0.4, the alkali equivalent is 6%, and the activator modulus is 1.0. The orthogonal test analysis reveals that the mechanical strength of the cementitious materials decreases with the increase of water-to-binder ratio and follows a trend of first increase and then decrease with diatomite content, alkali equivalent, and modulus. XRD and SEM analyses demonstrate that the crystallinity of mullite and N-A-S-H gel in the material is high, significantly enhancing the matrix’s density, reducing crack formation, and improving the mechanical properties of the material. These findings provide theoretical support for the development and application of alkali-activated diatomite/bauxite cementitious materials.
Key words:  alkali-activated material    diatomite    bauxite    pozzolanic activity    N-A-S-H gel    mechanical property
发布日期:  2025-10-27
ZTFLH:  TU528  
基金资助: 国家自然科学基金(52208238);中国博士后科学基金(2022M710964)
通讯作者:  *葛勇,博士,哈尔滨工业大学交通科学与工程学院教授、博士研究生导师。目前主要从事高原混凝土方面的研究。hitbm@163.com   
作者简介:  张爱,博士,现为哈尔滨工业大学交通科学与工程学院助理教授。目前主要研究领域为低碳胶凝材料。
引用本文:    
张爱, 袁浩然, 葛勇. 碱激发硅藻土/铝矾土胶凝材料的制备与性能研究[J]. 材料导报, 2025, 39(20): 24100122-6.
ZHANG Ai, YUAN Haoran, GE Yong. Preparation and Properties of Alkali-activated Diatomite/Bauxite Cementitious Materials. Materials Reports, 2025, 39(20): 24100122-6.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24100122  或          https://www.mater-rep.com/CN/Y2025/V39/I20/24100122
1 Wang H L, Li J H, Hou L, et al. Bulletin of the Chinese Ceramic Society, 2011, 30(1), 19(in Chinese).
王浩林, 李金洪, 侯磊, 等. 硅酸盐通报, 2011, 30(1), 19.
2 Pang B, Xiao L G. Bulletin of the Chinese Ceramic Society, 2017, 36(8), 2781(in Chinese).
庞博, 肖力光. 硅酸盐通报, 2017, 36(8), 2781.
3 Zheng R J, Ren Z J, Gao H M, et al. Journal of Alloys and Compounds, 2018, 757, 364.
4 Garderen N V, Clemens F J, Mezzomo M, et al. Applied Clay Science, 2011, 52(2), 115.
5 Huang Z H, Guo H Z, Pu H L, et al. Acta Mineralogica Sinica, 2022, 42 (5), 631(in Chinese).
黄志浩, 郭浩喆, 卜红玲, 等. 矿物学报, 2022, 42 (5), 631.
6 Hassan H S, Abdel-Gawwad H A, Vasquez-García S R, et al. Journal of Cleaner Production, 2019, 209, 1420.
7 Liu Z Y. Study on preparation and hydration mechanism of cementitious materials from diatomite and steel slag. Ph. D. Thesis, Hebei University of Engineering, China, 2019(in Chinese).
刘振宇. 硅藻土—钢渣基复合胶凝材料的制备及机理研究. 博士学位论文, 河北工程大学, 2019.
8 Arbin K, Palomo A, Fernández-Jiménez A. Ceramics International, 2013, 39, 9237.
9 Liang G W, Yao W. Construction and Building Materials, 2023, 376, 131026.
10 Elshimy A S, AbdelGawwad H A, Abu Sharib A A A. et al. Journal of Environmental Chemical Engineering, 2023, 11, 110392.
11 Gou M F, Huang F, Wang S J, et al. Materials Reports, 2015, 29(18), 100(in Chinese).
勾密峰, 黄飞, 王思军, 等. 材料导报, 2015, 29(18), 100.
12 Ma X W, Dong E L, Zhang C, et al. Journal of Materials Science and Engineering, 2021(3), 420(in Chinese).
马先伟, 董恩来, 张程, 等. 材料科学与工程学报, 2021(3), 420.
13 Hassan H S, Shi C, Hashem F S, et al. Resources, Conservation and Recycling, 2024, 202, 107402.
14 Fu Q, Bu M, Zhang Z, et al. Engineering, 2023, 20, 162.
15 He S, Huang X, Yu P, et al. Construction and Building Materials, 2024, 419, 135515.
16 Hu Z B, Zheng S L, Li Y, et al. Journal of the Chinese Ceramics, 2019, 49(7), 1395(in Chinese).
胡志波, 郑水林, 李渝, 等. 硅酸盐学报, 2021, 49(7), 1395.
17 Mi Z C, Zhu K J. Bulletin of The Chinese Ceramic Society, 2019, 38(5), 1625(in Chinese).
米增财, 朱开金. 硅酸盐通报, 2019, 38(5), 1625.
18 Liu J, Geng Y J, Li S C, et al. Journal of Qingdao University of Technology, 2019, 41(5), 82(in Chinese).
刘珺, 耿永娟, 李绍纯, 等. 青岛理工大学学报, 2020, 41(5), 82.
19 Ruan W L. Study on preparation and properties of alkali-excited diatomaceous earth-based cementitious materials. Ph. D. Thesis, Chongqing Technology and Business University, China, 2023(in Chinese).
阮文琳. 碱激发硅藻土基胶凝材料的制备与性能研究. 博士学位论文, 重庆工商大学, 2023.
20 Cui C, Tai W Y, Sun X H, et al. New Building Materials, 2024, 51(6), 94(in Chinese).
崔潮, 邰文玉, 孙小惠, 等. 新型建筑材料, 2024, 51(6), 94.
21 Yang L. Heilongjiang Water Conservancy Science and Technology, 2024, 52(9), 23(in Chinese).
杨李. 黑龙江水利科技, 2024, 52(9), 23.
22 Zhang B W. Shandong Chemical Industry, 2023, 52(24), 46(in Chinese).
张博文. 山东化工, 2023, 52(24), 46.
23 Zhu X P, Qian C, He B, et al. Cement and Concrete Research, 2020, 135, 106114.
24 He Y J, Lu L N, Struble L J, et al. Materials and Structures, 2013, 47(1-2), 311.
25 Xu Y Q, Zhang X W, Wang G, et al. Rock and Soil Mechanics, 2023, 44(12), 3501(in Chinese).
徐倚晴, 张先伟, 王港, 等. 岩土力学, 2023, 44(12), 3501.
[1] 董洪年, 杨明, 林天一, 陈沛然, 魏婷婷. 针刺密度对碳/碳复合材料力学行为影响的仿真分析[J]. 材料导报, 2025, 39(9): 23120170-6.
[2] 夏益健, 张宇, 张云升, 朱微微, 朱文轩. 磨细凝灰岩制备机制砂混凝土力学性能研究[J]. 材料导报, 2025, 39(9): 24030199-7.
[3] 钱如胜, 叶志波, 张云升, 赵儒泽, 孔德玉, 杨杨, 聂海波. 固碳强化再生粗骨料对其混凝土力学强度及体积稳定性的影响[J]. 材料导报, 2025, 39(9): 24020155-6.
[4] 燕伟, 李驰, 邢渊浩, 高瑜. 循环流化床多元固废粉煤灰基水泥胶砂固碳试验研究[J]. 材料导报, 2025, 39(9): 24010111-7.
[5] 陈港明, 王辉, 黄雪飞. 温轧对低铬FeCrAl合金显微组织及室温和高温力学性能的影响[J]. 材料导报, 2025, 39(9): 24060057-11.
[6] 陈继伟, 朱慧雯, 王海镔, 桑建权, 李艳花, 熊芬, 罗建新. 利用Hofmeister效应一步法制备离子导电耐低温强韧PVA水凝胶[J]. 材料导报, 2025, 39(9): 24050045-7.
[7] 陈永达, 胡智淇, 关岩, 常钧, 陈兵. 羟丙基甲基纤维素与硅烷偶联剂对磷酸镁基钢结构防火涂料性能的影响[J]. 材料导报, 2025, 39(8): 24010194-7.
[8] 雒亿平, 邢美光, 王德法, 易万成, 杨连碧, 薛国斌. 赤铁矿对偏高岭土基地聚物力学性能及反应机理的影响[J]. 材料导报, 2025, 39(8): 24040075-8.
[9] 李琼, 安宝峰, 苏睿, 乔宏霞, 王超群. 废玻璃粉透水混凝土物理性能及复合胶凝体系微观机理研究[J]. 材料导报, 2025, 39(8): 23100186-11.
[10] 程焱, 张弦, 苏志诚, 刘静, 吴开明. 具有TRIP效应的先进高强度钢力学性能及腐蚀行为的研究进展[J]. 材料导报, 2025, 39(8): 24020115-8.
[11] 徐焜, 黄子悦, 程云浦, 钱小妹. GNPs改性环氧复合材料等效弹性性能数值预测模型[J]. 材料导报, 2025, 39(8): 24040190-4.
[12] 董硕, 郑立森, 史奉伟, 王来, 刘哲. 钢纤维地聚物再生混凝土力学性能及强度指标换算[J]. 材料导报, 2025, 39(7): 24100219-8.
[13] 谢昭男, 陈军红, 黄西成, 邱勇. 橡胶的热老化力学性能与本构关系研究进展[J]. 材料导报, 2025, 39(7): 23120036-16.
[14] 段明翰, 覃源, 李阳, 耿凯强. 寒冷地区腈纶纤维混凝土力学性能及多层感知器神经网络预测[J]. 材料导报, 2025, 39(6): 23110143-9.
[15] 杨旭, 张天理, 朱志明, 徐连勇, 陈赓, 杨尚磊, 方乃文. 纳米颗粒对铝合金焊接凝固裂纹抑制机理及影响因素的研究进展[J]. 材料导报, 2025, 39(6): 24030070-10.
[1] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[2] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[3] JIA Zhihong, WENG Yaoyao, DING Lipeng, CHENG Tao, LIU Yingying, LIU Qing. Sn Microalloying for Aluminum Alloys: Strengthening Effects and Mechanisms[J]. Materials Reports, 2017, 31(9): 123 -127 .
[4] WANG Ru, ZHANG Shaokang, WANG Gaoyong. Influence and Mechanism of Mineral Admixtures on Setting and Hardening of Styrene-Butadiene Copolymer/Cement Composite Cementitious Material[J]. Materials Reports, 2017, 31(24): 69 -73 .
[5] DING Yutian, DOU Zhengyi, GAO Yubi, GAO Xin, LI Haifeng, LIU Dexue. In-situ Observation of Solidification Process of GH3625 Superalloy at Different Cooling Rates[J]. Materials Reports, 2017, 31(24): 150 -155 .
[6] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[7] LIU Guoyi, LIU Yuanjun, ZHAO Xiaoming. A Study on Protecting Efficiency to the Radiative Heat of the Outer Fabric for the Fire Proximity Suits[J]. Materials Reports, 2017, 31(22): 116 -120 .
[8] ZHANG Wangxi, WANG Yanzhi, LIANG Baoyan, LI Qiquan, LUO Wei, SUN Changhong, CHENG Xiaozhe, SUN Yuzhou. Review on the Development of Nanodiamonds Used as Functional Materials[J]. Materials Reports, 2018, 32(13): 2183 -2188 .
[9] YANG Fang, ZHANG Long, YU Kun, QI Tianjiao, GUAN Debin. Recent Advances in Humidity Sensitivity of Graphene[J]. Materials Reports, 2018, 32(17): 2940 -2948 .
[10] TIAN Yaqiang, LI Wang, ZHENG Xiaoping, WEI Yingli, SONG Jinying, CHEN Liansheng. Application of Alloy Elements in Quenching and Partitioning Steel:an Overview[J]. Materials Reports, 2019, 33(7): 1109 -1118 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed