Please wait a minute...
材料导报  2025, Vol. 39 Issue (20): 24100120-8    https://doi.org/10.11896/cldb.24100120
  无机非金属及其复合材料 |
一种提升水泥基材料固碳效率的新思路:选择性内暴露技术
苏佶智1, 马文菲2, 邵华3, 张戊晨1, 杨海涛2,*
1 国网河北省电力有限公司经济技术研究院,石家庄 050000
2 石家庄铁道大学土木工程学院,石家庄 050043
3 河北汇智电力工程设计有限公司,石家庄 050000
A New Idea to Improve Carbon Sequestration Efficiency of Cement-based Materials: Selective Internal Exposure Technology
SU Jizhi1, MA Wenfei2, SHAO Hua3, ZHANG Wuchen1, YANG Haitao2,*
1 State Grid Hebei Electric Power Co., Ltd., Economic and Technological Research Institute, Shijiazhuang 050000, China
2 School of Civil Engineering, Shijiazhuang Tiedao University, Shijiazhuang 050043, China
3 Hebei Huizhi Power Engineeing Design Co., Ltd., Shijiazhuang 050000, China
下载:  全 文 ( PDF ) ( 26208KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 混凝土在服役阶段的碳化反应可自发实现CO2的永久封存,但其固碳效率低下且易引起钢筋锈蚀。本研究借鉴人体呼吸系统,提出一种可提高混凝土固碳效率并避免钢筋锈蚀的选择性内暴露技术:通过在硬化浆体内部构建孔道,使目标区域基体发生碳化。此外,分析了此技术的可行性及其对水泥基材料碳化行为的影响。结果表明:PVC管中高吸水性树脂的收缩行为可使目标区域基体暴露并碳化,证实了选择性内暴露技术的可行性。经历碳化后,暴露位置基体中Ca(OH)2和C-S-H凝胶的量减少、CaCO3的量增加,基体的微观力学性能显著提升。引入矿物掺合料(粉煤灰、矿粉和硅灰)会消耗Ca(OH)2,从而导致碳化反应生成的CaCO3的量减少。通过调控暴露位置深度和暴露面积,可进一步提升此技术的应用潜力。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
苏佶智
马文菲
邵华
张戊晨
杨海涛
关键词:  水泥基材料  选择性内暴露  固碳行为  微观力学性能  矿物掺合料    
Abstract: The carbonation of concrete during service can spontaneously achieve permanent CO2 sequestration, but its carbon sequestration efficiency is low and may cause the corrosion of steel bars. This study draws on the human respiratory system and proposes a selective internal exposure technique that can improve the carbon sequestration efficiency of concrete and avoid the corrosion of steel bars. By setting voids inside the har-dened pastes, the target area in the matrix undergoes carbonization. Moreover, the feasibility of this technology and its impact on the carbonation behavior of cement-based materials were analyzed. The results indicate that the shrinkage of superabsorbent polymer in PVC tubes can expose and carbonize the target area in the matrix, verifying the feasibility of the selective internal exposure technology. After carbonization, the amount of Ca(OH)2 and C-S-H gel in the exposed matrix decreased, the amount of CaCO3 increased, and the micromechanical properties of the matrix significantly improved. The addition of mineral admixtures (fly ash, granulated blast furnace slag powder, and silica fume) will consume Ca(OH)2, resulting in a decrease in the amount of CaCO3 generated by carbonation reaction. By regulating the depth and area of exposure, the application potential of this technology can be further enhanced.
Key words:  cement-based material    selective internal exposure    carbon sequestration behavior    micromechanical property    mineral admixture
发布日期:  2025-10-27
ZTFLH:  TU528  
基金资助: 国家自然科学基金(52208278);中央引导地方科技发展资金项目(236Z1504G);国网河北省电力有限公司(河北汇智电力工程设计有限公司)科技研发资助项目(SGHEHZ00SJJS 2400045)
通讯作者:  *杨海涛,博士,石家庄铁道大学讲师、硕士研究生导师。主要从事耐低温混凝土和高性能混凝土自愈合研究。yanghaitao@stdu.edu.cn   
作者简介:  苏佶智,博士,国网河北省电力有限公司经济技术研究院高级工程师。主要从事新型装配式结构抗震性能及绿色建造研究。
引用本文:    
苏佶智, 马文菲, 邵华, 张戊晨, 杨海涛. 一种提升水泥基材料固碳效率的新思路:选择性内暴露技术[J]. 材料导报, 2025, 39(20): 24100120-8.
SU Jizhi, MA Wenfei, SHAO Hua, ZHANG Wuchen, YANG Haitao. A New Idea to Improve Carbon Sequestration Efficiency of Cement-based Materials: Selective Internal Exposure Technology. Materials Reports, 2025, 39(20): 24100120-8.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24100120  或          https://www.mater-rep.com/CN/Y2025/V39/I20/24100120
1 Yang H T, Lian X S, Liu M, et al. Materials Reports, 2025, 39(2), 23120145(in Chinese)
杨海涛, 练鑫晟, 柳苗, 等. 材料导报, 2025, 39(2), 23120145.
2 China Construction Industry Association. Concrete, 2024(4), 192(in Chinese).
中国建筑业协会混凝土分会. 混凝土, 2024(4), 192.
3 Gibson. Reducing the embodied carbon content of asphalt. Master’s Thesis, University of Strathclyde, UK, 2011.
4 Li L K, Liu Q, Huang T Y, et al. Materials Reports, 2022, 36(19), 82(in Chinese).
李林坤, 刘琦, 黄天勇, 等. 材料导报, 2022, 36(19), 82.
5 Possan E, Thomaz W A, Aleandri G A, et al. Case Studies in Construction Materials, 2017, 6, 147.
6 Rostami V, Shao Y, Boyd A J. Construction and Building Materials, 2011, 25(8), 3345.
7 Pade C, Guimaraes M. Cement and Concrete Research, 2007, 37(9), 1348.
8 Jacobsen S, Jahren P. ACI/ CANMET 3-day Symposium on Sustainable Development and Concrete Technology, 2001, 9, 329.
9 Takuma W, Zhi C, Sho H, et al. Nature Communications, 2022, 13(1), 4158.
10 Edna P, Willian A, Gustavo A, et al. Case Studies in Construction Materials, 2017, 6, 147.
11 Kaliyavaradhan K S, Ling T C. Journal of CO2 Utilization, 2017, 20, 234.
12 Silva A, Neves R, Brito J. Cement and Concrete Composites, 2014, 50, 73.
13 Pasupathy K, Berndt M, Castel A, et al. Construction and Building Materials, 2016, 125, 661.
14 Ji Y S, Zhang L L, Ma H R, et al. Journal of Building Materials, 2012, 15(5), 624(in Chinese).
姬永生, 张领雷, 马会荣, 等. 建筑材料学报, 2012, 15(5), 624.
15 Gai H D, Feng C H, Dong Y J, et al. Materials Reports, 2020, 34(7), 7107(in Chinese).
盖海东, 冯春花, 董一娇, 等. 材料导报, 2020, 34(7), 7107.
16 Wang L C, Zhang L. Journal of Building Materials, 2020, 23(6), 1471(in Chinese).
王立成, 张磊. 建筑材料学报, 2020, 23(6), 1471.
17 Yang H T, Bian H J, Liu J H. Materials Reports, 2023, 37(4), 247(in Chinese).
杨海涛, 卞洪健, 刘娟红. 材料导报, 2023, 37(4), 247.
18 Gao Y, Hu C, Zhang Y, et al. Cement and Concrete Composites, 2018, 86, 315.
19 Xu H X. Study on migration characteristics and control mechanism of CO2 in the process of carbonation curing for concrete. Master’s Thesis, University of Jinan, China, 2017(in Chinese).
徐红新. 碳化养护混凝土过程中CO2迁移规律及控制机制研究. 硕士学位论文, 济南大学, 2017.
20 Choi Y C, Kim J, Choi S. Construction and Building Materials, 2017, 137, 96.
21 Rong Z D, Sun W, Xiao H J, et al. Construction and Building Materials, 2014, 51, 446.
22 Çopurolu O, Schlangen E. Cement and Concrete Research, 2007, 38(1), 27.
23 Yue Y F, Wang J J, Bai Y. Construction and Building Materials, 2018, 159, 610.
24 Duan P, Shui Z H, Chen W, et al. Construction and Building Materials, 2013, 44, 1.
25 Park B, Young C C. Construction and Building Materials, 2021, 278, 122390.
26 Liu P, Yu Z W, Chen Y. Cement and Concrete Composites, 2020, 114, 103736.
27 Tong L Y, Liu Q F. Journal of Building Materials, 2024, 27(10), 879(in Chinese).
童良玉, 刘清风. 建筑材料学报, 2024, 27(10), 879.
28 He P P, Shi C J, Tu Z J, et al. Cement and Concrete Composites, 2016, 72, 80.
29 Gong P, Zhang C, Wu Z, et al. Construction and Building Materials, 2022, 321, 126368.
30 Yang L, Zhu Z, Sun H, et al. Construction and Building Materials, 2023, 403, 133155.
31 Zhang T, Ma B, Jiang D, et al. Construction and Building Materials, 2021, 301, 124372.
32 Yang J, Zhao H L, He X Y, et al. Cement and Concrete Composites, 2024, 152, 105642.
33 Chang C F, Chen J W. Cement and Concrete Research, 2006, 36(9), 1760.
34 Liu J, Fan X, Liu J, et al. Construction and Building Materials, 2021, 307, 124986.
35 Mehdizadeh H, Jia X, Mo K H, et al. Environmental Pollution, 2021, 280, 116914.
36 Wang Y, Lu B, Hu X, et al. Cement and Concrete Composites, 2021, 123, 104194.
37 Mishra G, Danoglidis P, Shah S, et al. Cement and Concrete Composites, 2023, 140, 105078.
38 Tang H Y, Zuo X B, Zou Y X, et al. Journal of Building Materials, 2023, 26(6), 571(in Chinese).
汤昊源, 左晓宝, 邹欲晓, 等. 建筑材料学报, 2023, 26(6), 571.
39 Dan M, Cise U, En Hua Y, et al. Construction and Building Materials, 2022, 361, 129610.
40 Xie Y, Sun T, Shui Z, et al. Construction and Building Materials, 2022, 340, 127823.
41 Lai C L, Liu L P, Liu J H, et al. Journal of the Chinese Ceramic Society, 2023, 51(11), 2890(in Chinese).
赖创林, 刘乐平, 刘剑辉, 等. 硅酸盐学报, 2023, 51(11), 2890.
42 Zhu X P, He B, Tang Y Q, et al. Journal of Building Materials, 2024,27(12), 1112(in Chinese).
朱新平, 何倍, 汤宇祺, 等. 建筑材料学报, 2024, 27(12), 1112.
43 Lu B, Shi C J, Hou G H. Construction and Building Materials, 2018, 188, 417.
44 Ban S L. The influence of admixtures on microstructure and performance of recycled concrete interface transtion zone. Master’s Thesis, Qingdao University of Technology, China, 2023(in Chinese).
班顺莉.矿物掺合料对再生混凝土界面过渡区微结构影响研究.硕士学位论文,青岛理工大学,2023.
[1] 刘奎生, 崔勇, 于晓, 栾海涛, 宋奇达, 陈佳俊, 马子翔, 房奎圳. 恒湿与变湿养护条件下MgO膨胀剂对水泥砂浆膨胀性能的影响分析[J]. 材料导报, 2025, 39(7): 24020085-7.
[2] 李刊, 魏智强, 路承功, 蒲育. 纳米SiO2改性聚合物水泥基复合材料孔隙结构演变特征及强度预测[J]. 材料导报, 2025, 39(6): 24070202-10.
[3] 王志航, 白二雷, 黄河, 杜宇航, 任彪. 碳纤维增强水泥基材料界面改性研究进展[J]. 材料导报, 2025, 39(5): 24020133-9.
[4] 谷立楠, 王亚男, 隋高阳, 潘正祺, 冯竟竟. 温度对掺加PAM的新拌水泥基材料黏聚性的影响[J]. 材料导报, 2025, 39(20): 24060105-6.
[5] 苏佶智, 杨世超, 邵华, 张戊晨, 杨海涛. SAP孔引入对水泥基材料压溃行为的影响[J]. 材料导报, 2025, 39(19): 24090207-8.
[6] 张盼盼, 吕忠. 内置修复剂轻骨料水泥基材料自修复性能及机理研究进展[J]. 材料导报, 2025, 39(19): 24080181-9.
[7] 崔嘉铭, 马红瑞, 马哲洋, 纪璐鑫, 王胜, 巴明芳. 二次铝灰烧结渣料磨细粉对改性硫氧镁水泥基材料性能的影响及机理研究[J]. 材料导报, 2025, 39(15): 24040219-9.
[8] 王志航, 白二雷, 刘俊良, 周俊鹏, 任彪. 碳纤维及碳纳米材料改性水泥基材料电磁屏蔽及吸波性能研究进展[J]. 材料导报, 2025, 39(13): 24030248-9.
[9] 杜习贤, 李刚, 王爱芹, 曹澳利, 孙建仁. 水泥基材料氯离子的固化进展研究[J]. 材料导报, 2025, 39(13): 24040220-14.
[10] 李少飞, 魏智强, 乔宏霞, 曹辉, 赵辛源, 葸玲玲. 纳米氧化石墨烯与聚合物改性水泥基复合材料性能研究进展[J]. 材料导报, 2025, 39(10): 24040171-12.
[11] 李华伟, 王倩, 王荣, 刘飞宇, 谢汶桦, 刘锋. 复合吸波剂增强钢渣-水泥基双层结构吸波材料的制备[J]. 材料导报, 2024, 38(23): 23080003-8.
[12] 郑建岚, 王雅思, 陈僖, 张旺城. 含氯再生骨料混凝土中钢筋抗锈蚀性能试验研究[J]. 材料导报, 2024, 38(22): 23110219-7.
[13] 陈君, 左晓宝, 邹欲晓, 黎亮. 硫酸盐-氯盐环境下粉煤灰-水泥砂浆物相演变及定量分析[J]. 材料导报, 2024, 38(22): 23080011-7.
[14] 张铖, 王振地, 史鑫宇, 李庭忠, 孙国星, 梁瑞. 超吸水树脂对高性能水泥基复合材料收缩和水化的影响[J]. 材料导报, 2024, 38(22): 23090194-7.
[15] 郭远臣, 刘芯州, 王雪, 叶青, 向凯, 王锐. 多尺度钢纤维混杂增强水泥基材料抗冲击性能及阻裂能力[J]. 材料导报, 2024, 38(2): 22030271-8.
[1] Pei HE, Weizhi YAO, Jianming LYU, Bo GAO, Xianrong LI. Radiation Resistance Design and Nanoscale Second-phase Particles Characterization for ODS Steels: a Review[J]. Materials Reports, 2018, 32(1): 34 -40 .
[2] ZHANG Wenpei, LI Huanhuan, HU Zhili, QIN Xunpeng. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting[J]. Materials Reports, 2017, 31(13): 85 -89 .
[3] YANG Xiaojie, DONG Binghai, CHEN Fengxiang, WAN Li, ZHAO Li, WANG Shimin. One-dimensional TiO2 Photoanodes for Dye-sensitized Solar Cells: Fabrication and Applications[J]. Materials Reports, 2017, 31(17): 138 -145 .
[4] TAO Lei, ZHENG Yunwu,DI Mingwei, ZHANG Yanhua, ZHENG Zhifeng. Preparation of Porous Carbon Nanofiber from Liquid Phenolic Resin and Its Characterization[J]. Materials Reports, 2017, 31(10): 101 -106 .
[5] ZHU Lijuan, WANG Min, GU Zhengwei, HE Lingling. Research on Stretch Bending Forming of Stainless Steel Curved Beam[J]. Materials Reports, 2017, 31(24): 179 -181 .
[6] SU Lan, ZHANG Chubo, WANG Zhen, MI Zhenli. Finite Element Simulation of Electromagnetic Induction Heating in Hot Metal Gas Forming[J]. Materials Reports, 2017, 31(24): 182 -177 .
[7] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[8] FU Yu, HE Junbao, ZHANG Ping, LENG Yumin, MA Benyuan, LI Jiyan. Single Crystal Growth and Physical Properties of Layered Transitional Metal Bismuthide BaAg2-δBi2[J]. Materials Reports, 2018, 32(12): 2043 -2046 .
[9] LIU Huan, HUA Zhongsheng, HE Jiwen, TANG Zetao, ZHANG Weiwei, LYU Huihong. Indium Recovery from Waste Indium Tin Oxide: a Technological Review[J]. Materials Reports, 2018, 32(11): 1916 -1923 .
[10] HUANG Wenxin, LI Jun, XU Yunhe. Research Progress on Manganese Dioxide Based Supercapacitors[J]. Materials Reports, 2018, 32(15): 2555 -2564 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed