Please wait a minute...
材料导报  2025, Vol. 39 Issue (20): 24060105-6    https://doi.org/10.11896/cldb.24060105
  无机非金属及其复合材料 |
温度对掺加PAM的新拌水泥基材料黏聚性的影响
谷立楠1, 王亚男1, 隋高阳2, 潘正祺1, 冯竟竟1,*
1 山东农业大学水利土木工程学院,山东 泰安 271000
2 山东省水利勘测设计院有限公司,济南 250000
Temperature-dependent Cohesion of Fresh Cement-based Materials with PAM
GU Linan1, WANG Yanan1, SUI Gaoyang2, PAN Zhengqi1, FENG Jingjing1,*
1 College of Water Conservancy and Civil Engineering, Shandong Agricultural University, Tai’an 271000, Shandong, China
2 Shandong Survey and Design Institute of Water Conservancy Company Limited, Jinan 250000, China
下载:  全 文 ( PDF ) ( 6789KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为探究多种施工温度时聚丙烯酰胺(PAM)对新拌水泥基材料黏聚性的影响,测试了不同温度(20、40、60 ℃)和PAM掺量(0%~0.10%)的新拌水泥净浆/砂浆的剪切黏度、流动性和保水性,并通过有机碳含量(TOC)、表观黏度和紫外可见光谱等指标探讨了PAM的吸附行为和氢键作用机理。结果表明,PAM在室温下能较好地提高材料黏聚性,且PAM掺量越多效果越显著,但随温度升高其提升效果不再显著,60 ℃时提升效果几乎消失。水泥颗粒对PAM的吸附能力随PAM掺量增加或温度上升而增强;水泥间隙溶液中未被吸附的PAM含量会随掺量增加而升高,但随温度升高而降低;同时,PAM与水之间的氢键作用在PAM掺量增加时会增强,而在温度上升时则会减弱。相比于吸附行为,PAM对材料黏聚性的影响与水泥间隙溶液中剩余PAM含量及PAM与水分之间的氢键作用的关系更为密切。PAM的增黏效果来自吸附行为和氢键作用的双重驱动,常温下可显著改善材料黏聚性,但温度升高后,因氢键作用的减弱导致对黏聚性的改善效果不如常温时显著。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
谷立楠
王亚男
隋高阳
潘正祺
冯竟竟
关键词:  聚丙烯酰胺(PAM)  新拌水泥基材料  黏聚性  温度    
Abstract: To explore the influence of PAM on the cohesion of fresh cement-based materials, the shear viscosity, fluidity and water retention of fresh cement-based materials with different PAM (0%—0.10%) content were tested at different temperatures (20, 40 and 60 ℃). The mechanism of adsorption and hydrogen bonding on PAM modification was discussed by means of organic carbon content, apparent viscosity and UV-vis. The results show that PAM can improve the cohesion of fresh cement-based materials at room temperature, and the enhancing effect increases with the raise of PAM content, but decreases with the raise of temperature, and it is almost ineffective at 60 ℃. The adsorption capacity of cement particles to PAM enhances with the increase of PAM content or temperature. Residual PAM content in the interstitial solution of paste increases with the increase of PAM content, but decreases with the raise of temperature. Meanwhile, the hydrogen bonding between PAM and water enhances with more PAM added, but weakens when the temperature rises. The influence of PAM on the cohesion of fresh cement-based materials is more closely related to the hydrogen bonding between residual PAM and water molecules in cement interstitial solution compared with the adsorption between PAM and cement particles. The cohesion enhancing effect of PAM comes from the dual drive of adsorption behavior and hydrogen bonding. At room temperature, it can significantly improve cohesiveness, but as the temperature increases, the weakening of hydrogen bonding leads to a less significant improvement in cohesiveness than that at room temperature.
Key words:  polyacrylamide (PAM)    fresh cement-based materials    cohesion    temperature
发布日期:  2025-10-27
ZTFLH:  TU59  
基金资助: 国家自然科学基金(52402031;52478263;52178227)
通讯作者:  *冯竟竟,博士,山东农业大学教授、博士研究生导师。主要研究方向为膨胀剂及补偿收缩混凝土、工农业固体废弃物资源化利用等。fengjingjing@sdau.edu.cn   
作者简介:  谷立楠,博士,山东农业大学副教授,中国科学院上硅所和同济大学联合培养博士,主要研究方向为大流态水泥基材料、自流平砂浆、增粘保水类外加剂等。
引用本文:    
谷立楠, 王亚男, 隋高阳, 潘正祺, 冯竟竟. 温度对掺加PAM的新拌水泥基材料黏聚性的影响[J]. 材料导报, 2025, 39(20): 24060105-6.
GU Linan, WANG Yanan, SUI Gaoyang, PAN Zhengqi, FENG Jingjing. Temperature-dependent Cohesion of Fresh Cement-based Materials with PAM. Materials Reports, 2025, 39(20): 24060105-6.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24060105  或          https://www.mater-rep.com/CN/Y2025/V39/I20/24060105
1 Wang X, Li X, Zhou A, et al. Construction and Building Materials, 2021, 268, 121116.
2 Khayat K. Cement and Concrete Composites, 1998, 20, 171.
3 Isik I, Ozkul M. Construction and Building Materials, 2014, 72, 239.
4 Palacios M, Flatt R. Science and technology of concrete admixtures,Woodhead Publishing, 2016, pp. 415.
5 Sikandar M, Wazir N, Khan A, et al. Construction and Building Materials, 2020, 245, 118469.
6 Patural L, Porion P, Damme H, et al. Cement and Concrete Research, 2010, 40, 1378.
7 Bessaies-Bey H, Baumann R, Schmitz M, et al. Cement and Concrete Research, 2015, 76, 98.
8 Rai U, Singh R. Materials Science and Engineering, 2005, 392, 42.
9 Sun Z, Xu Q. Materials Science and Engineering, 2008, 474, 104.
10 Li H, Ni D, Li L, et al. Construction and Building Materials, 2020, 260, 119914.
11 Deng Y, Dixon J, White G, et al. Colloids and Surfaces A: Physicoche-mical and Engineering Aspects, 2006, 281, 82.
12 Negro C, Sánchez L, Fuente E, et al. Chemical Engineering Science, 2006, 61, 2522.
13 Kong X, Pakusch J, Jansen D, et al. Cement and Concrete Research, 2016, 84, 30.
14 Pei Y, Zhao L, Du G, et al. Petroleum, 2016, 2, 399.
15 Zhao D, Song J, Xu J, et al. Desalination, 2019, 468, 114058.
16 Li Z, Qi D, Zou D, et al. Materials Reports, 2022, 36(S2), 533(in Chinese).
李正平, 齐冬有, 邹德麟, 等. 材料导报, 2022, 36(S2), 533.
17 Mozhdehi A, Bamoharram F, Morsali A, et al. Journal of Molecular Li-quids, 2020, 297, 111912.
18 Lima N, Junior R, Belarmino M, et al. Journal of Molecular Structure, 2019, 1176, 622.
19 Ganeshsrinivas E, Sathyanarayana D, Machida K, et al. Journal of Molecular Structure, 1997, 403, 153.
20 Ganeshsrinivas E, Sathyanarayana D, Machida K, et al. Journal of Molecular Structure, 1996, 361, 217.
21 Khan M, Nasir M, Al-Amoudi O, et al. Construction and Building Materials, 2021, 272, 121865.
22 Li Z, Liu J, Qao M, et al. Materials Reports, 2023, 37(S1), 206(in Chinese).
李贞, 刘加平, 乔敏, 等. 材料导报, 2023, 37(S1), 206.
23 McCarter W, Ben-Saleh A. Building and Environment, 2001, 36, 919.
24 Yang X, Liu J, Li H, et al. Construction and Building Materials, 2020, 235, 117532.
25 Yang X, Liu J, Li H, et al. Construction and Building Materials, 2019, 200, 218.
26 Gu L, Liu T, Wu K, et al. Cement and Concrete Composites, 2022, 130, 104539.
27 Zhao Y, Qiu J, Ma Z, et al. Powder Technology, 2021, 381, 82.
28 Cheng H, Wu S, Li H, et al. Construction and Building Materials, 2020, 231, 117117.
29 Luo B, Luo Z, Ren H, et al. Materials Reports, 2023, 37(9), 91(in Chinese).
罗彪, 罗正东, 任辉启, 等. 材料导报, 2023, 37(9), 91.
30 Lin Y, Xu C, Guan A, et al. Polymer, 2019, 161, 190.
31 Plank J, Hirsch C. Cement and Concrete Research, 2007, 37, 537.
32 Kim B, Jiang S, Jolicoeur C, et al. Cement and Concrete Research, 2000, 30, 887.
33 Zhang Y, Kong X, Lu Z, et al. Cement and Concrete Research, 2015, 67, 184.
34 Rodnikova M, Agayan G, Balabaev N. Journal of Molecular Liquids, 2019, 283, 374.
35 Ma Y, Liu Y, Su H, et al. Journal of Molecular Liquids, 2018, 256, 314.
36 Ma Y, Zhang Y, Zhang W, et al. Journal of Molecular Liquids, 2018, 269, 839.
37 Ma Y, Yang H, Guo J, et al. Theoretical Chemistry Accounts, 2017, 136, 1.
38 Yang J, Zhao B, Fu J, et al. Journal of Molecular Liquids, 2018, 271, 530.
39 AlMomani F, Örmeci B. Journal of Environmental Chemical Engineering, 2014, 2, 765.
40 Gu L, Li H, Yang X, et al. Journal of Environmental Management, 2020, 255, 109934.
41 Lankone R, Deline A, Barclay M, et al. Talanta, 2020, 218, 121148.
42 Lesko S, Lesniewska E, Nonat A, et al. Ultramicroscopy, 2001, 86, 11.
[1] 郭幼丹, 程晓农. SAF2507双相不锈钢二次急冷淬火成形析出相的析出行为[J]. 材料导报, 2025, 39(9): 23100100-7.
[2] 曹世豪, 赵锡佳, 王方全, 喻贤磊, 杨荣山. 方腔内正十八烷相变材料凝固放热特性试验研究[J]. 材料导报, 2025, 39(9): 24040013-6.
[3] 蒋力, 唐昭敏, 赵健清, 李世杰, 李昊宇, 杨怡宁, 潘皛, 王新茗. 原位可注射pH/温度双响应载药水凝胶的制备及抗肿瘤应用[J]. 材料导报, 2025, 39(6): 24010129-7.
[4] 张昌青, 马东东, 谷怀壮, 王栋, 刘恩荣, 张鹏省. 1060-H24纯铝无轴肩微型搅拌摩擦焊的数值模拟分析[J]. 材料导报, 2025, 39(5): 24020082-6.
[5] 江亦然, 张东桥, 钱应平, 王腾强. 带槽高强钢板感应加热工艺的数值模拟与实验验证[J]. 材料导报, 2025, 39(19): 24080111-8.
[6] 李灏, 刘宇伦, 刘金龙, 陈良贤, 李成明, 魏俊俊. 真空热处理对金刚石基TaxN薄膜微观结构及电学性能的影响[J]. 材料导报, 2025, 39(15): 24060003-5.
[7] 陈作宁, 师仲然, 胡骞, 王益起, 罗小兵. 渗碳体形态提高船体结构钢塑性机理研究[J]. 材料导报, 2025, 39(14): 24050191-9.
[8] 黄玮, 欧梅桂, 梁益龙, 马永涛. Q&P工艺中淬火冷速和分配温度对中碳钢显微组织和力学性能的影响[J]. 材料导报, 2025, 39(11): 24050239-6.
[9] 王丽红, 满蛟, 姜一鸣, 刘庚根, 周建平. 外加载荷对热弹性马氏体正-逆相变影响机制的相场模拟研究[J]. 材料导报, 2024, 38(8): 22070156-7.
[10] 彭鹏, 邵宇鹰, 胡海敏, 李振明, 刘伟. 基于碲化铋基柔性热电器件的自取能温度传感器结构设计及性能研究[J]. 材料导报, 2024, 38(6): 22080105-5.
[11] 马彬, 黄启钦, 肖薇薇, 黄小林. 钢渣-偏高岭土基导电地聚合物的压敏性能研究[J]. 材料导报, 2024, 38(6): 22040039-6.
[12] 肖嵩, 刘明, 张小龙, 黄艳斐, 王海斗. 等离子喷涂熔滴铺展凝固行为研究现状[J]. 材料导报, 2024, 38(6): 22080031-12.
[13] 唐建辉, 白银, 陈徐东, 张伟. 温度对水性聚氨酯-混凝土宏微观粘结特性的影响[J]. 材料导报, 2024, 38(4): 22060045-6.
[14] 刘悦卿, 赵江涛, 王凤青, 刘雷, 丁勇, 孙颖莉, 闫阿儒. 铝镍钴永磁材料的研究进展[J]. 材料导报, 2024, 38(23): 23080088-10.
[15] 裴文霞, 赵国仙, 丁浪勇, 方堃, 王帆, 刘冉冉. 温度对管线钢在SRB/CO2环境中的腐蚀影响[J]. 材料导报, 2024, 38(23): 23070058-8.
[1] Pei HE, Weizhi YAO, Jianming LYU, Bo GAO, Xianrong LI. Radiation Resistance Design and Nanoscale Second-phase Particles Characterization for ODS Steels: a Review[J]. Materials Reports, 2018, 32(1): 34 -40 .
[2] ZHANG Wenpei, LI Huanhuan, HU Zhili, QIN Xunpeng. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting[J]. Materials Reports, 2017, 31(13): 85 -89 .
[3] YANG Xiaojie, DONG Binghai, CHEN Fengxiang, WAN Li, ZHAO Li, WANG Shimin. One-dimensional TiO2 Photoanodes for Dye-sensitized Solar Cells: Fabrication and Applications[J]. Materials Reports, 2017, 31(17): 138 -145 .
[4] TAO Lei, ZHENG Yunwu,DI Mingwei, ZHANG Yanhua, ZHENG Zhifeng. Preparation of Porous Carbon Nanofiber from Liquid Phenolic Resin and Its Characterization[J]. Materials Reports, 2017, 31(10): 101 -106 .
[5] ZHU Lijuan, WANG Min, GU Zhengwei, HE Lingling. Research on Stretch Bending Forming of Stainless Steel Curved Beam[J]. Materials Reports, 2017, 31(24): 179 -181 .
[6] SU Lan, ZHANG Chubo, WANG Zhen, MI Zhenli. Finite Element Simulation of Electromagnetic Induction Heating in Hot Metal Gas Forming[J]. Materials Reports, 2017, 31(24): 182 -177 .
[7] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[8] FU Yu, HE Junbao, ZHANG Ping, LENG Yumin, MA Benyuan, LI Jiyan. Single Crystal Growth and Physical Properties of Layered Transitional Metal Bismuthide BaAg2-δBi2[J]. Materials Reports, 2018, 32(12): 2043 -2046 .
[9] LIU Huan, HUA Zhongsheng, HE Jiwen, TANG Zetao, ZHANG Weiwei, LYU Huihong. Indium Recovery from Waste Indium Tin Oxide: a Technological Review[J]. Materials Reports, 2018, 32(11): 1916 -1923 .
[10] HUANG Wenxin, LI Jun, XU Yunhe. Research Progress on Manganese Dioxide Based Supercapacitors[J]. Materials Reports, 2018, 32(15): 2555 -2564 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed