Please wait a minute...
材料导报  2025, Vol. 39 Issue (20): 24070109-7    https://doi.org/10.11896/cldb.24070109
  无机非金属及其复合材料 |
球磨和超声对碳纳米管导电浆料综合性能的影响研究
马青青, 陈男, 龚泽晖, 陈海龙*
青岛科技大学机电工程学院,山东 青岛 266061
Study on Effects of Ball Milling and Ultrasound on Comprehensive Performance of Carbon Nanotube Conductive Paste
MA Qingqing, CHEN Nan, GONG Zehui, CHEN Hailong*
School of Electromechanical Engineering, Qingdao University of Science and Technology, Qingdao 266061, Shandong, China
下载:  全 文 ( PDF ) ( 22303KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 碳纳米管的一维管状结构使其具有良好的力学性能、电化学性能、热学性能,在导电浆料领域得到了广泛应用。如何得到分散性好、结构缺陷少、导电性能好的碳纳米管导电浆料是其应用在锂离子电池中表现出出色电化学性能的前提。本工作应用不同的物理分散方法包括球磨和超声,不同物理分散作用时间,分别制备了质量分数为5%的碳纳米管油性导电浆料,研究了不同物理分散方法和不同物理分散作用时间对碳纳米管导电浆料的结构、形貌、电阻率、稳定性的影响。实验结果表明,球磨8 h的碳纳米管IG/ID值达到了最大值1.058,电阻率为94.36 mΩ·cm,超声3 h的碳纳米管IG/ID值达到了最大值0.985,电阻率为115.7 mΩ·cm,说明在球磨条件下碳纳米管一维管状结构的维持比在超声条件下优异,结构缺陷少,并且球磨条件下的浆料电阻率比超声条件下的低,因此球磨条件下的浆料导电性能更优异;此外,在同种物理分散方法下,球磨6 h和超声3 h的碳纳米管导电浆料的吸光度下降速度最慢,表明在这两个分散时间下,浆料的稳定性最佳。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
马青青
陈男
龚泽晖
陈海龙
关键词:  碳纳米管  导电浆料  球磨  超声  电阻率  稳定性    
Abstract: The one-dimensional tubular structure of carbon nanotubes makes it have good mechanical properties, electrochemical properties and thermal properties, and has been widely used in the field of conductive paste. How to obtain the conductive paste of carbon nanotubes with good dispersion, less structural defects and good conductive properties is the premise of its application in lithium-ion batteries to show excellent electrochemical properties. In this study, oily conductive paste with carbon nanotubes mass fraction of 5% was prepared by different physical dispersion methods, including ball milling and ultrasound, and different physical dispersion time, respectively. The effects of different physical dispersion methods and different physical dispersion time on the structure, morphology, resistivity and stability of carbon nanotube conductive paste were studied. The experimental results showed that the IG/ID value of carbon nanotubes reached the maximum value of 1.058 and the resistivity of 94.36 mΩ·cm for 8 h ball milling, and the IG/ID value of carbon nanotubes reached the maximum value of 0.985 and the resistivity of 115.7 mΩ·cm for 3 h ultrasound. The results showed that the one-dimensional tubular structure of carbon nanotubes was better maintained under ball milling than under ultrasonic condition, and the structural defects were fewer, and the resistivity of the paste under ball milling was lower than that under ultrasonic condition, so the conductive property of the paste under ball milling was better. The experimental results showed that under the same physical dispersion method, the absorbance of carbon nanotube conductive paste decreased the most slowly for ball milling for 6 h and ultrasonic for 3 h, and the stability of the paste was the best under the effect of this dispersion time.
Key words:  carbon nanotube    conductive paste    ball milling    ultrasonication    resistivity    stability
发布日期:  2025-10-27
ZTFLH:  TM242  
基金资助: 山东省自然科学基金(ZR2019BEE022);山东省泰山学者资助项目 (ts20190937)
通讯作者:  *陈海龙,博士,讲师,硕士研究生导师,机电工程学院新能源科学与工程系主任。主要从事橡胶纳米复合材料制备工艺及性能研究、碳纳米材料导电浆料制备工艺、性能及应用研究等方面的科研工作。chlqust@163.com   
作者简介:  马青青,青岛科技大学机电工程学院硕士研究生,在陈海龙导师的指导下进行研究。目前主要研究领域为碳纳米管导电浆料的制备及在锂电池中的应用。
引用本文:    
马青青, 陈男, 龚泽晖, 陈海龙. 球磨和超声对碳纳米管导电浆料综合性能的影响研究[J]. 材料导报, 2025, 39(20): 24070109-7.
MA Qingqing, CHEN Nan, GONG Zehui, CHEN Hailong. Study on Effects of Ball Milling and Ultrasound on Comprehensive Performance of Carbon Nanotube Conductive Paste. Materials Reports, 2025, 39(20): 24070109-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24070109  或          https://www.mater-rep.com/CN/Y2025/V39/I20/24070109
1 Lin J X, Huang S Z, Li X D. Guangdong Chemical Industry, 2023, 50(18), 18 (in Chinese).
林菊香, 黄少真, 李忻达. 广东化工, 2023, 50(18), 18.
2 Cheng S B. Preparation and properties of conductive carbon paste for carbon film electrode. Master’s Thesis, Hubei University of Arts and Science, China, 2024 (in Chinese).
程时榜. 碳膜电极用导电碳浆的制备及其性能研究. 硕士学位论文, 湖北文理学院, 2024.
3 Ma Q Q, Chen N, Chen H L, et al. Carbon Techniques, 2023, 42(5), 16 (in Chinese).
马青青, 陈男, 陈海龙, 等. 炭素技术, 2023, 42(5), 16.
4 Kang X. Preparation of graphene composite PEDOT and its conductive paste. Master’s Thesis, Wuhan University, China, 2017 (in Chinese).
康希. 石墨烯复合PEDOT及其导电浆料的制备. 硕士学位论文, 武汉大学, 2017.
5 Liu T, Zhao J, Xu W, et al. Nanoscale, 2018, 10(2), 614.
6 Tian F, Nie W, Guo Q K, et al. Nonferrous Metals Science and Engineering, 2019, 10(2), 62 (in Chinese).
田丰, 聂薇, 郭乾坤, 等. 有色金属科学与工程, 2019, 10(2), 62.
7 Teng C, Zhai R, Li Z, et al. Carbon Trends, 2021, 5, 100104.
8 Wu Y, Tang R, Li W, et al. Journal of Alloys and Compounds, 2020, 830, 154575.
9 Wu Y J. Preparation of highly dispersed graphene conductive paste and its application in lithium-ion batteries. Master’s Thesis, South China University of Technology, China, 2020 (in Chinese).
吴永健. 高分散性石墨烯导电浆料制备及在锂离子电池中的应用. 硕士学位论文, 华南理工大学, 2020.
10 Tian F. Application and synthesis of carbon nanotube as conductive agent for carbon materials in Li-ion battery. Master’s Thesis, Jiangxi University of Science and Technology, China, 2020 (in Chinese).
田丰. 碳纳米管的合成及其作为导电剂在锂离子电池正极材料中的应用研究. 硕士学位论文, 江西理工大学, 2020.
11 Zhang P, Fan J, Wang Y, et al. Carbon, 2024, 222, 118998.
12 Li C, Thostenson E, Chou T. Composites Science and Technology, 2008, 28, 1445.
13 Chen G, Futaba D, Sakurai S, et al. Carbon, 2014, 67, 318.
14 Li J, Ma P, Chow W, et al. Advanced Functional Materials, 2007, 17(16), 3207.
15 Wu Y J, Tang R H, Ouyang L Z, et al. Materials Reports, 2020, 34(12), 12030 (in Chinese).
吴永健, 唐仁衡, 欧阳柳章, 等. 材料导报, 2020, 34(12), 12030.
[1] 高英力, 李昀博, 田维伟, 朱俊材, 廖美捷, 王蒴. 胶粉改性沥青预处理技术研究进展[J]. 材料导报, 2025, 39(9): 24040022-10.
[2] 武金帆, 徐芬, 孙立贤, 廖鹿敏, 管彦洵. 具有抗氧化性的Al-Bi(C2H5OH)3-C多孔块体制氢材料[J]. 材料导报, 2025, 39(8): 24030133-6.
[3] 崔岩, 李硕, 曹雷刚, 杨越, 刘园. 颗粒级配对55%SiC/Al复合材料力学性能和尺寸稳定性的影响[J]. 材料导报, 2025, 39(8): 23120157-7.
[4] 张鹏, 李兵, 徐飞越, 汪锐杰, 王敏. 预处理条件对QP980钢组织及塑性失稳行为的影响[J]. 材料导报, 2025, 39(8): 24020130-6.
[5] 李欢, 张健, 伍世英, 刘千喜. 焊头形状对Cu/Al大功率超声焊接温度场及塑性变形的影响[J]. 材料导报, 2025, 39(6): 24010115-6.
[6] 刘海龙, 芶立. 用于ECG电极的长期稳定性评估方法:以皮革电极为例[J]. 材料导报, 2025, 39(4): 23100257-6.
[7] 张宏飞, 张久鹏, 王帅, 陈子璇, 李哲, 裴建中. 沥青化学组分与宏观性能靶向关系研究综述与展望[J]. 材料导报, 2025, 39(4): 24010162-15.
[8] 夏晋, 郑宇航, 汪雨青. 基于多尺度模型的混凝土有效电阻率与几何代表尺寸研究[J]. 材料导报, 2025, 39(4): 24020001-7.
[9] 周传辉, 王玺朝, 何国杜, 董岚, 吴子华, 谢华清, 王元元. 基于高稳定水基石墨烯/骨胶纳米流体的光热转换性能研究[J]. 材料导报, 2025, 39(3): 23120093-6.
[10] 王异, 覃佳勇, 陆胜达, 黄旭东, 黄在银, 张飞武. 基于天然黄铁矿构筑自修复循环催化剂及其催化性能研究[J]. 材料导报, 2025, 39(20): 24090156-8.
[11] 曹茗凯, 刘崟, 昝宇宁, 王东, 王全兆, 肖伯律, 马宗义, 王文广. 高能球磨过程中CNT对纳米TiO2增强铝基复合材料粉末形貌及粒径的影响[J]. 材料导报, 2025, 39(18): 24070186-6.
[12] 岳庆, 李文全, 盛鸿伟, 兰伟. 高温退火增强碳纳米管的生物电化学性能研究[J]. 材料导报, 2025, 39(18): 24080109-5.
[13] 付同宇, 曹燕光, 李昭东, 魏坤霞, 张建卫, 谭峰亮. 基于超声法对不同状态高强度结构钢板残余应力研究[J]. 材料导报, 2025, 39(17): 24060139-7.
[14] 刘强, 邓橙, 李海云, 商怡然, 胡恩源, 朱孟府, 耿宏章. 氮掺杂碳纳米管包覆金属钴催化剂的制备及催化过氧化氢氧化性能研究[J]. 材料导报, 2025, 39(16): 24040170-6.
[15] 周慧晴, 王艺达, 陈欣, 郭庆, 曹世琦, 刘于谦, 肖瑞琳, 梁海霞. 有氧运动调控磷酸钙纳米材料细胞毒性的抑制作用及机制[J]. 材料导报, 2025, 39(15): 25040077-7.
[1] . Effect of Annealing on Crystalline Structure and Low-temperature Toughness of
Polypropylene Random Copolymer Dedicated Pipe Materials
[J]. Materials Reports, 2017, 31(4): 65 -69 .
[2] YAN Xin, HUI Xiaoyan, YAN Congxiang, AI Tao, SU Xinghua. Preparation and Visible-light Photocatalytic Activity of Graphite-like Carbon Nitride Two-dimensional Nanosheets[J]. Materials Reports, 2017, 31(9): 77 -80 .
[3] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[4] WANG Xinyu, ZHEN Siqi, DONG Zhengchao, ZHONG Chonggui. Electrocaloric Effects of Ferroelectric Materials: an Overview[J]. Materials Reports, 2017, 31(19): 13 -18 .
[5] WANG Bin, ZHANG Lele, DU Jinjing, ZHANG Bo, LIANG Lisi, ZHU Jun. Applying Electrothermal Reduction Method to the Preparation of V-Ti-Cr-Fe Alloys Serving as Hydrogen Storage Materials[J]. Materials Reports, 2018, 32(10): 1635 -1638 .
[6] GAO Wei, ZHAO Guangjie. Synergetic Oxidation Modification of Wooden Activated Carbon Fiber with Nitric Acid and Ceric Ammonium Nitrate[J]. Materials Reports, 2018, 32(9): 1507 -1512 .
[7] ZHANG Tiangang,SUN Ronglu,AN Tongda,ZHANG Hongwei. Comparative Study on Microstructure of Single-pass and Multitrack TC4 Laser Cladding Layer on Ti811 Surface[J]. Materials Reports, 2018, 32(12): 1983 -1987 .
[8] WANG Bilei, LI Yongcan, SONG Changjiang. A State-of-the-art Review on Yield Point Elongation Phenomenon of Low Carbon Steel[J]. Materials Reports, 2018, 32(15): 2659 -2665 .
[9] ZHU Yaming, ZHAO Chunlei, LIU Xian, ZHAO Xuefei, GAO Lijuan, CHENG Junxia. Study on the Basic Physical Properties of Toluene Soluble Extracted from Coal Tar Pitch[J]. Materials Reports, 2019, 33(2): 368 -372 .
[10] ZHOU Chao, LI Detian, ZHOU Hui, ZHANG Kaifeng, CAO Shengzhu. Non-evaporable Getter Films for Vacuum Packaging of MEMSDevices: an Overview[J]. Materials Reports, 2019, 33(3): 438 -443 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed