Please wait a minute...
材料导报  2025, Vol. 39 Issue (2): 24010155-6    https://doi.org/10.11896/cldb.24010155
  高分子与聚合物基复合材料 |
表面接枝KH550 的石墨烯改性聚二甲基硅氧烷热力学性能的分子动力学模拟
李亚莎*, 田泽, 王璐敏, 庞梦昊, 曾跃凯, 赵光辉
三峡大学电气与新能源学院,湖北 宜昌 443002
Molecular Dynamics Simulation of Thermodynamic Properties of Polydimethylsiloxane Modified by KH550-grafted Graphene
LI Yasha*, TIAN Ze, WANG Lumin, PANG Menghao, ZENG Yuekai, ZHAO Guanghui
School of Electrical and New Energy, China Three Gorges University, Yichang 443002, Hubei, China
下载:  全 文 ( PDF ) ( 6688KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为分析表面接枝有硅烷偶联剂KH550的石墨烯对聚二甲基硅氧烷(PDMS)性能的影响,本工作采用分子动力学的方法对纯PDMS、未接枝KH550的石墨烯改性PDMS,以及表面接枝KH550的石墨烯(接枝密度分别为6%和12%)改性PDMS进行建模,从微观角度对比分析改性后PDMS热力学性能的提升。模拟结果表明,在PDMS中掺杂石墨烯或在石墨烯表面接枝KH550后再与PDMS混合,均能改善PDMS热导率、玻璃化转变温度、自由体积、均方位移及水分子的扩散系数和结合能等热力学性能。在含水模型中,接枝密度为6%和12%的表面接枝KH550石墨烯改性PDMS相较于纯PDMS 250 K热导率分别提高25.6%和21.6%,玻璃化转变温度分别提高70 K和77 K。对比接枝KH550的石墨烯改性PDMS的含水与不含水的模型可知,水分子能够提高均方位移,降低玻璃化转变温度和减小自由体积,同时水分子扩散系数及结合能随温度与接枝密度的不同而有所差异。本研究的结果可为减少冰闪电压对电力系统影响的实验研究提供参考,同时对研发输电线路融冰、疏水性材料提供理论支撑。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李亚莎
田泽
王璐敏
庞梦昊
曾跃凯
赵光辉
关键词:  聚二甲基硅氧烷(PDMS)  硅烷偶联剂  KH550  热导率  扩散系数  分子动力学模拟    
Abstract: The present work focused on the effects of silane coupling agent-grafted graphene on the properties of polydimethylsiloxane (PDMS), and carried out molecular dynamics modelling and simulation for pure PDMS, PDMS modified by non-grafted graphene, and PDMS modified by KH550-grafted graphene (with graft intensities of 6% and 12%), in order to analyze the thermodynamic property improvement induced by modification. The simulation indicated that either non-grafted graphene or KH550-grafted graphene has positive influence on thermodynamic properties of PDMS such as thermal conductivity, glass transition temperature (Tg), free volume, mean square displacement, and water molecules' diffusion coefficient and H2O-composite binding energy. In the water-containing models, 6% and 12% KH550-grafted graphene modified PDMSs could achieve improvements in thermal conductivity (at 250 K) of 25.6% and 21.6%, respectively, and Tg rises of 70 K and 77 K, respectively, compared with pure PDMS. The comparison between the water-containing and non-water models of the KH550-grafted graphene modified PDMS confirmed that water molecules results in increase in mean square displacement, and reductions in Tg and free volume, and the H2O molecule diffusion coefficient and H2O-composite binding energy differs with varying temperature and graft intensity. The output of this work may provide useful information for future studies on mitigating the impact of flashover voltage on electric system, and theoretical support for the development of transmission line de-icing and hydrophobic materials.
Key words:  polydimethylsiloxane (PDMS)    silane coupling agent    KH550    thermal conductivity    diffusion coefficient    molecular dynamics simulation
出版日期:  2025-01-25      发布日期:  2025-01-21
ZTFLH:  TM211  
  TB35  
通讯作者:  *李亚莎,三峡大学电气与新能源学院教授、博士研究生导师。目前主要从事电力系统绝缘老化与电磁场数值仿真计算等研究工作。liyasha@ctgu.edu.cn   
引用本文:    
李亚莎, 田泽, 王璐敏, 庞梦昊, 曾跃凯, 赵光辉. 表面接枝KH550 的石墨烯改性聚二甲基硅氧烷热力学性能的分子动力学模拟[J]. 材料导报, 2025, 39(2): 24010155-6.
LI Yasha, TIAN Ze, WANG Lumin, PANG Menghao, ZENG Yuekai, ZHAO Guanghui. Molecular Dynamics Simulation of Thermodynamic Properties of Polydimethylsiloxane Modified by KH550-grafted Graphene. Materials Reports, 2025, 39(2): 24010155-6.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24010155  或          https://www.mater-rep.com/CN/Y2025/V39/I2/24010155
1 Xu Huoju, Miao Xiren. Power System Protection and Control, 2017, 45(5), 139 (in Chinese).
许火炬,缪希仁.电力系统保护与控制, 2017, 45(5), 139.
2 Hannat R, Weiss J, Garnier F, et al. Engineering Applications of Computational Fluid Mechanics, 2014, 8(4), 530.
3 Chen Rongxin, Zhang Wei, Sun Wei et al. Chinese Journal of Mechanical Engineering, 2022,58(3),186 (in Chinese).
陈荣昕,张炜,孙魏,等.机械工程学报, 2022, 58(3), 186.
4 Li Jian, Wang Xiangwen, Huang Zhengyong, et al. Transactions of China Electrotechnical Society, 2017,32 (16), 61 (in Chinese).
李剑,王湘雯,黄正勇,等.电工技术学报, 2017, 32(16), 61.
5 Liu Yanan, Chen Shuping, Shi Qingzhi, et al. Acta Petrolei Sinica (Petroleum Processing), 2023(6), 1316 (in Chinese).
刘亚楠,陈叔平,史庆智,等. 石油学报(石油加工), 2023(6), 1316.
6 Guo Wenjiao, Li Juan, Li Ying. China plastics, 2023, 37(12), 135 (in Chinese).
郭文娇,李娟,李莹.中国塑料, 2023, 37(12), 135.
7 Pierro A D, Mortazavi B, Noori H, et al. Nanomaterials (Basel, Swi-tzerland), 2021, 11(5) 1252.
8 Zhao Yushun. Preparation method and anti icing performance research of superhydrophobic coatings on insulators. Ph.D. Thesis, Chongqing University, China, 2010 (in Chinese).
赵玉顺.绝缘子超疏水涂层制备方法与防冰性能研究. 博士学位论文, 重庆大学,2010.
9 Simovich T, Wu A H, Lamb R N. Thin Solid Films, 2015, 589, 472.
10 Zeng Yifan, Wu Guangning, Yang Yan, et al. Proceedings of the CSEE, 2020, 40(4), 1369 (in Chinese).
曾奕凡,吴广宁,杨雁,等.中国电机工程学报, 2020, 40(4), 1369.
11 Wang M, Duan X,Xu Y, et al. ACS Nano, 2016, 10, 7231.
12 Yang Wenyan, Chen Yue, Xiao Chunguang, et al. Plastics, 2019,48(1), 46 (in Chinese).
杨文彦,陈岳,肖春光,等. 塑料, 2019, 48(1), 46.
13 Zhang Xiaoxing, Chen Xiaoyu, Xiao Song, et al. High Voltage Technology, 2018, 44(3), 740 (in Chinese).
张晓星,陈霄宇,肖淞,等.高电压技术, 2018, 44(3), 740.
14 Wang X B, Tang C, Wang Q, et al. Energies, 2017, 10(9), 1377.
15 Li Yasha, Chen Dongdong, Zhang Xiaobin et al. Chinese Journal of Ato-mic and Molecular Physics, 2023, 40(6), 91 (in Chinese).
李亚莎,陈董董,章小彬,等.原子与分子物理学报, 2023, 40(6), 91.
16 Liu X, Rao Z. International Journal of Heat and Mass Transfer, 2019, 132, 362.
17 Guo Lei, Ding Shilin, Yuan Shuai, et al. High Voltage Technology, 2022, 48(4), 1471 (in Chinese).
郭蕾,丁诗林,袁帅,等.高电压技术, 2022, 48(4), 1471.
18 Gao Yangyang, Hu Fengyan, Zhang Liqun. Journal of Beijing University of Chemical Technology (Natural Science Edition), 2018, 45(5), 40 (in Chinese).
高洋洋,胡凤燕,张立群.北京化工大学学报(自然科学版), 2018, 45(5), 40.
19 Lyu Le. Preparation and performance study of high shun directional graphene based thermal interface materials. Master's Thesis, Shanghai University, China, 2019 (in Chinese).
吕乐.高顺向石墨烯基热界面材料制备及性能研究.硕士学位论文,上海大学,2019.
20 Zhang Wenqing, Li Hao, Sui Gang. Glass Fiber Reinforced Plastic/Composite Materials, 2018, 298(11), 15 (in Chinese).
张文卿,李浩,隋刚.玻璃钢/复合材料, 2018, 298(11), 15.
21 Li Yasha, Wang Jiamin, Xia Yu, et al. Journal of Composite Materials, 2024, 41(1), 485 (in Chinese).
李亚莎,王佳敏,夏宇,等.复合材料学报, 2024, 41(1), 485.
22 Allen M P, Tildesley D J. Computer simulation of liquids, Clarendon Press, UK, pp. 1987.
23 Liu Yali Research on crystal morphology and dielectric properties of PP/MMT nanocomposites. Master's Thesis, Harbin Institute of Technology, China, 2010 (in Chinese).
刘亚丽. PP/MMT纳米复合材料结晶形态与介电性能研究.硕士学位论文,哈尔滨理工大学, 2010.
[1] 周祎伟, 段海涛, 李健, 马利欣, 李文轩, 尤锦鸿, 贾丹. 外加磁场对摩擦副材料摩擦磨损及抗腐蚀性能影响的研究进展[J]. 材料导报, 2025, 39(2): 23110090-19.
[2] 耿长建, 杨怡斌, 由宝财, 董会苁, 马海坤. 成分相关的单晶Cr-Co-Ni合金形变机制的分子动力学模拟研究[J]. 材料导报, 2025, 39(2): 23120142-5.
[3] 杨程程, 柳力, 刘朝晖, 黄优, 刘磊鑫. 基于分子动力学的偶联剂接枝改性玄武岩纤维与沥青粘附特性研究[J]. 材料导报, 2024, 38(6): 22110027-7.
[4] 赵永生, 阎峰云, 刘雪. B掺杂对金刚石热导率的影响[J]. 材料导报, 2024, 38(20): 23080238-8.
[5] 杨绿峰, 龙凤波, 孙继玮, 陈俊武. 混凝土暴露试验的稳定时长与试验分析方法[J]. 材料导报, 2024, 38(2): 22020091-7.
[6] 顾春平, 姚程阳, 陈士龙, 王倩楠. 溶液浓度与组成成分对氯离子在裂缝中传输速率的影响[J]. 材料导报, 2024, 38(19): 22100103-7.
[7] 王媛媛, 张璐, 程洗洗, 钱麒, 徐欢, 徐华, 杨雪舟, 杨波波, 邹军. 立方砷化硼晶体生长、性能及应用研究进展[J]. 材料导报, 2024, 38(17): 22110207-10.
[8] 郑度奎, 李敬法, 宇波, 黄志强, 张引弟, 刘翠伟, 赵杰, 韩东旭. 非金属PE管材氢气-甲烷渗透研究进展[J]. 材料导报, 2024, 38(16): 23020018-11.
[9] 李泽政, 申宏飞, 吴文平. 含孔洞Cu64Zr36及Cu/Cu64Zr36复合材料拉伸变形的分子动力学研究[J]. 材料导报, 2024, 38(15): 23040235-6.
[10] 莫耀鸿, 刘剑辉, 刘乐平, 陈正, 蒋增贵, 史才军. 水泥-蔗渣灰-矿粉海砂砂浆的抗压强度与抗氯盐渗透性能研究[J]. 材料导报, 2024, 38(14): 23030005-10.
[11] 王梓霄, 熊良涛, 李浩源. 共价有机框架材料的热导和热电应用研究进展[J]. 材料导报, 2024, 38(12): 24040129-8.
[12] 张伟钢, 李娇, 吕丹丹. 涂料助剂对PDMS改性环氧树脂/Al复合涂层性能的影响[J]. 材料导报, 2024, 38(10): 23010030-5.
[13] 刘小村, 潘明艳. Ⅰ掺杂提高铅固溶立方相AgBiSe2热电性能[J]. 材料导报, 2023, 37(5): 21060082-5.
[14] 王兰喜, 何延春, 王虎, 吴春华, 李林. 石墨烯导热纸研究进展[J]. 材料导报, 2023, 37(3): 20110183-9.
[15] 刘电超, 金国, 井勇智, 崔秀芳, 房永超, 陈卓, 王薪贺. 稀土氧化物掺杂对YSZ热障涂层热物理性能影响的研究进展[J]. 材料导报, 2023, 37(24): 22040242-6.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed