Please wait a minute...
材料导报  2025, Vol. 39 Issue (18): 24080091-10    https://doi.org/10.11896/cldb.24080091
  金属与金属基复合材料 |
机器学习辅助高熵合金设计的研究进展
李俊炎, 张伟强*, 高志玉*
沈阳理工大学材料科学与工程学院,沈阳 110159
Advances in Machine Learning-aided Design of High-entropy Alloys
LI Junyan, ZHANG Weiqiang*, GAO Zhiyu*
School of Materials Science and Engineering, Shenyang Ligong University, Shenyang 110159, China
下载:  全 文 ( PDF ) ( 22935KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 高熵合金作为新型合金材料,因其复杂的成分和优异的性能而备受关注。机器学习方法通过高通量处理数据计算结果,识别筛选影响高熵合金结构与性能的重要因素,达到可以快速预测高熵合金相结构、性能和优化合金成分的目的,为新型高熵合金的设计提供科学方法。本文基于机器学习辅助高熵合金研究的相关文献,对机器学习辅助高熵合金相结构预测、成分设计、性能预测及多目标优化方面进行综述。已有的研究表明,高熵合金成分是影响相结构的重要因素,机器学习模型能通过正向预测或逆向设计在高熵合金巨大的成分空间中搜索更优的成分及比例。通过机器学习分类模型结合经验特征可以有效辅助高熵合金相结构高效、高精度预测。回归模型可有效预测高熵合金的性能,高精度预测的性能可以辅助高熵合金相结构的预测。NSGA-Ⅱ算法与Pareto最优解结合可通过进行交叉变异生成多目标优化后的最优解集。机器学习模型的发展需要搭建高质量高熵合金数据库,以及构建以数据驱动为基础的高熵合金“成分-相结构-性能”关系。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李俊炎
张伟强
高志玉
关键词:  高熵合金  机器学习  相结构预测  性能预测  成分设计  多目标优化    
Abstract: Asa kind of novel materials, high-entropy alloys have attracted much attention due to their complex compositions and excellent properties. By employing machine learning methods with high-throughput data processing, the key factors dominating the microstructure and performance of high-entropy alloys can be identified and screened, which enables the phase microstructures or the performances to be rapidly predicted and the composition efficiently optimized. In this paper, the recent progresses in high-entropy alloy design assisted by machine learning are reviewed, covering phase microstructure prediction, composition design, mechanical property and performance forecasting, and multi-objective optimization. Former researches indicate that the alloy compositions play crucial roles in determining phase microstructures, and machine learning models incorporated with empirical features can be used for efficiently and accurately predicting the microstructures of high-entropy alloy. Moreover, the machine learning models can search for better composition, microstructure to mechanical properties in the extensive composition space of high-entropy alloys through forward prediction or backward optimized design. Among these, the regression model can effective predictthe mechanical properties of high-entropy alloys, whereas the high-accuracy prediction of properties will promote phase microstructure design. The NSGA-II algorithm, in conjunction with Pareto optimal solutions, generates optimal solution sets through crossover and mutation for multi-objective optimization. Further development of machine learning models requires the establishment of high-quality databases and the improvement of data-driven relationships among compositions, phase microstructures and properties of high entropy alloys.
Key words:  high entropy alloy    machine learning    phase structure prediction    ingredient design    multi-objective optimization
出版日期:  2025-09-25      发布日期:  2025-09-11
ZTFLH:  TG139  
基金资助: 辽宁省教育厅高等学校基本科研项目(LJKMZ20220593);辽宁省教育厅高等学校基本科研项目(LJ212410144011)
通讯作者:  *张伟强,沈阳理工大学材料科学与工程学院教授、硕士研究生导师。目前主要从事高熵合金、金属相变及强韧化等方面的研究。zhangwq@sylu.edu.cn;
高志玉,沈阳理工大学材料科学与工程学院副教授,硕士研究生导师。主要从事金属材料强韧化、材料信息学与计算机辅助材料优化设计等研究。gaozhiyu@sylu.edu.cn   
作者简介:  李俊炎,现为沈阳理工大学材料科学与工程学院硕士研究生,在张伟强教授及高志玉副教授的指导下进行研究。目前主要研究领域为复合材料与军用关键材料。
引用本文:    
李俊炎, 张伟强, 高志玉. 机器学习辅助高熵合金设计的研究进展[J]. 材料导报, 2025, 39(18): 24080091-10.
LI Junyan, ZHANG Weiqiang, GAO Zhiyu. Advances in Machine Learning-aided Design of High-entropy Alloys. Materials Reports, 2025, 39(18): 24080091-10.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24080091  或          https://www.mater-rep.com/CN/Y2025/V39/I18/24080091
1 Yeh J W, Chen S K, Lin S J, et al. Advanced Engineering Materials, 2004, 6(5), 299.
2 Cantor B, Chang I T H, Knight P, et al. Materials Science and Enginee-ring, A, 2004, 375, 213.
3 Li T, Wang S, Fan W, et al. Acta Materialia, 2023, 246, 118728.
4 Yang S, Lu J, Xing F, et al. Acta Materialia, 2020, 192, 11.
5 San S, Tong Y, Bei H, et al. Materials & Design, 2021, 209, 110071.
6 Katiyar N K, Goel G, Goel S. Emergent Materials, 2021, 4(6), 1635.
7 Kaufmann K, Vecchio K S. Acta Materialia, 2020, 198, 178.
8 Lee S Y, Byeon S, Kim H S, et al. Materials & Design, 2021, 197, 109260.
9 Liu Y, Zhao T, Ju W, et al. Journal of Materiomics, 2017, 3(3), 159.
10 Li T, Wang S, Fan W, et al. Acta Materialia, 2023, 246, 118728.
11 Huang E W, Lee W J, Singh S S, et al. Materials Science and Engineering, R, Reports, 2022, 147, 100645.
12 Wang Z, Wei J, Feng J, et al. Journal of Micromechanics and Molecular Physics, 2020, 5(2), 2040001.
13 Liu X, Xu P, Zhao J, et al. Journal of Alloys and Compounds, 2022, 921, 165984.
14 Shi L, Liang P C, Ch Q, et al. China Tissue Engineering Research, 2024, 28 (17), 2766(in Chinese).
史榴, 梁鹏晨, 常庆, 等. 中国组织工程研究, 2024, 28(17), 2766.
15 Li F F, Kuang J L, Ji J H, et al. Journal of Engineering Science, 2024, 46 (1), 120(in Chinese).
李丰范, 匡健隆, 季佳浩, 等. 工程科学学报, 2024, 46(1), 120.
16 Liu W J. Design and performance of Fe-Co-Ni-based γ′ phase-strengthened high-entropy alloy based on material genetic engineering technology. Master's Thesis, Guilin University of Electronic Technology, China, 2023(in Chinese).
刘伟杰. 基于材料基因工程技术的Fe-Co-Ni基γ′相强化型高熵合金的设计及性能研究. 硕士学位论文, 桂林电子科技大学, 2023.
17 Zhuang X L. Design and optimization of CoNi-based deformed superalloy composition based on materi-al genetic engineering method. Ph. D. Thesis, University of Science and Technology Beijing, China, 2023(in Chinese).
庄晓黎. 基于材料基因工程方法的CoNi基变形高温合金成分设计与优化. 博士学位论文, 北京科技大学, 2023.
18 Zhou Z, Zhou Y, He Q, et al. Computational Materials, 2019, 5(1), 128.
19 Liu Y, Zhao T, Ju W, et al. Journal of Materiomics, 2017, 3(3), 159.
20 Lin X J, Jiang H T, Li Q, et al. Journal of Engineering Science, 2024, 46 (6), 1120(in Chinese).
林轩杰, 江汉同, 李倩, 等. 工程科学学报, 2024, 46(6), 1120.
21 Lu K L. Machine learning-based material design and industrial optimization. Ph. D. Thesis, Shanghai U-niversity, China, 2021(in Chinese).
卢凯亮. 基于机器学习的材料设计与工业优化. 博士学位论文, 上海大学, 2021.
22 Wen C. Composition design and performance optimization of high-entropy alloys based on machine learning. Ph. D. Thesis, University of Science and Technology Beijing, China, 2022(in Chinese).
文成. 基于机器学习的高熵合金成分设计与性能优化. 博士学位论文, 北京科技大学, 2022.
23 Wen C, Zhang Y, Wang C, et al. Acta Materialia, 2019, 170, 109.
24 Rao Z, Tung P Y, Xie R, et al. Science, 2022, 378(6615), 78.
25 Wang J, Kwon H, Kim H S, et al. Computational Materials, 2023, 9(1), 60.
26 Li Y H, Ye Y C, Zhao F Y, et al. Journal of Materials Engineering, 2024, 52(1), 153(in Chinese).
李亚豪, 叶益聪, 赵凤媛, 等. 材料工程, 2024, 52(1), 153
27 Xue D, Balachandran P V, Hogden J, et al. Nature Communications, 2016, 7(1), 1-9.
28 Li S K, Fan B J, Liu X W, et al. Transactions of Beijing Institute of Technology, 2023, 43(5), 517(in Chinese).
李树奎, 樊博建, 刘兴伟, 等. 北京理工大学学报, 2023, 43(5), 517
29 Li T, Wang S, Fan W, et al. Acta Materialia, 2023, 246, 118728.
30 Wu Q, Wang Z, He F, et al. Journal of Phase Equilibria and Diffusion, 2018, 39, 446.
31 Chen H L, Mao H, Chen Q. Materials Chemistry and Physics, 2018, 210, 279.
32 Li R, Xie L, Wang W Y, et al. Frontiers in Materials, 2020, 7, 290.
33 Soni V K, Sanyal S, Rao K R, et al. Proceedings of the Institution of Mechanical Engineers:Part C, Journal of Mechanical Engineering Science, 2021, 235(22), 6268.
34 Zeng Y, Man M, Ng C K, et al. Materials & Design, 2024, 241, 112929.
35 Vazquez G, Chakravarty S, Gurrola R, et al. Computational Materials, 2023, 9(1), 68.
36 Sun Y, Lu Z, Liu X, et al. Applied Physics Letters, 2021, 119(20), 136.
37 Liu F, Xiao X, Huang L, et al. Materials Today Communications, 2022, 30, 103172.
38 Marquis E A, Bachhav M, Chen Y, et al. Current Opinion in Solid State and Materials Science, 2013, 17(5), 217.
39 Singh A K, Kumar N, Dwivedi A, et al. Intermetallics, 2014, 53, 112.
40 Gao S, Gao Z, Zhao F. Materials Today Communications, 2023, 35, 105894.
41 Guo S, Ng C, Lu J, et al. Journal of Applied Physics, 2011, 109(10), 36.
42 Wang Z, Huang Y, Yang Y, et al. Scripta Materialia, 2015, 94, 28.
43 Wen C, Zhang Y, Wang C, et al. Acta Materialia, 2019, 170, 109.
44 Zhang C, Liu J, Xie S Y, et al. Material Engineering, 2023, 51 (3), 1(in Chinese).
张聪, 刘杰, 解树一, 等. 材料工程, 2023, 51(3), 1.
45 Zhang Meng, Hua Fu'an, Zhao Wei. Materials Reports, 2021, 35 (S1), 331(in Chinese).
张猛, 花福安, 赵巍. 材料导报, 2021, 35(S1), 331.
46 Machaka R. Computational Materials Science, 2021, 188, 110244.
47 Islam N, Huang W, Zhuang H L. Computational Materials Science, 2018, 150, 230.
48 Qu N, Chen Y, Lai Z, et al. Procedia Manufacturing, 2019, 37, 299.
49 Li Y, Guo W. Physical Review Materials, 2019, 3(9), 095005.
50 Gao T C, Gao J B, Li Q, et al. Materials Engineering, 2024, 52(1), 27(in Chinese).
高田创, 高建宝, 李谦, 等. 材料工程, 2024, 52(1), 27.
51 Wang S, Da L I, Xiong J. Transactions of Nonferrous Metals Society of China, 2023, 33(2), 518.
52 Vazquez G, Singh P, Sauceda D, et al. Acta Materialia, 2022, 232, 117924.
53 Bhandari U, Ghadimi H, Zhang C, et al. Materials, 2022, 15(14), 4997.
54 Hayashi G, Suzuki K, Terai T, et al. Science and Technology of Advanced Materials, Methods, 2022, 2(1), 381.
55 Zhang Y F, Ren W, Wang W L, et al. Journal of Physics, 2023, 72 (18), 66(in Chinese).
张逸凡, 任卫, 王伟丽, 等. 物理学报, 2023, 72(18), 66.
56 Labusch R. Physica Status Solidi (b), 1970, 41(2), 659.
57 Yang Zh Y. Hardness prediction of high-entropy alloys based on generative adversarial network data a-ugmentation method. Master's Thesis, Harbin University of Science and Technology, China, 2023(in Chinese).
杨志远. 基于生成对抗网络数据扩充法的高熵合金硬度预测. 硕士学位论文, 哈尔滨理工大学, 2023.
58 Zou R. Hardness prediction of AlCoCrCuFeNi high-entropy alloys based on machine learning. Master's Thesis, Harbin University of Science and Technology, China, 2021(in Chinese).
邹瑞. 基于机器学习的AlCoCrCuFeNi系高熵合金硬度预测. 硕士学位论文, 哈尔滨理工大学, 2021.
59 Bhandari U, Rafi M R, Zhang C, et al. Materials Today Communications, 2021, 26, 101871.
60 Juan Y, Niu G, Yang Y, et al. Transactions of Nonferrous Metals Society of China, 2024, 34(3), 709.
61 Zhang W T, Wang X Q, Zhang F Q, et al. Rare Metals, 2024, 43, 4639.
62 Halpren E, Yao X, Chen Z W, et al. Acta Materialia, 2024, 270, 119841.
63 Yadav T P, Kumar A, Verma S K, et al. Transactions of the Indian National Academy of Engineering, 2022, 7(1), 147.
64 Sun C, Goel R, Kulkarni A R. Langmuir, 2024, 40(7), 3691.
65 He J, Li Z, Lin J, et al. Materials & Design, 2024, 246, 113326.
66 Giles S A, Sengupta D, Broderick S R, et al. npj Computational Materials, 2022, 8(1), 235.
67 Radhika N, Niketh M S, Akhil U V, et al. Results in Engineering, 2024, 23, 102780.
68 Lu Z, Wang J, Wu Y, et al. International Journal of Hydrogen Energy, 2022, 47(81), 345833.
69 Lu Z, Chen Z W, Singh C V. Matter, 2020, 3(4), 1318.
70 Lin M, Zhao R, Liao Y, et al. AIP Advances, 2024, 14(4), 045204.
71 Roy A, Taufique M F N, Khakurel H, et al. npj Materials Degradation, 2022, 6(1), 9.
72 Wei L, Yuying Y. Journal of Materials Processing Technology, 2008, 208(1-3), 499.
73 Menou E, Toda-Caraballo I, Rivera-Díaz-del P E J, et al. Materials & Design, 2018, 143, 185.
74 Li Z, Birbilis N. Integrating Materials and Manufacturing Innovation, 2024, 13, 435.
75 Guo T, Wu L, Li T. Small, 2021, 17(42), 2102972.
76 Cheng H, Ge M L, Si T Y, et al. Materials Research and Application, 2023, 17(6), 1070(in Chinese).
程洪, 葛美伶, 司天宇, 等. 材料研究与应用, 2023, 17(6), 1070.
[1] 姚通睿, 王曼, 席晓丽. 含Al耐热合金高温氧化行为研究现状[J]. 材料导报, 2025, 39(6): 24050040-10.
[2] 李自强, 崔素萍, 马忠诚, 王亚丽, 王晶, 刘云, 乔志杨. 机器学习算法用于水泥强度预测的研究进展[J]. 材料导报, 2025, 39(5): 23120133-12.
[3] 刘朝晖, 盛佳豪, 柳力. 数据驱动下的沥青混合料材料组成设计方法[J]. 材料导报, 2025, 39(4): 24010230-9.
[4] 张泽疆, 李新梅, 朱春金, 李航, 杨定力. 纳米TiB2对CoCrFeNiSi高熵合金涂层耐磨与耐蚀性能的影响[J]. 材料导报, 2025, 39(3): 23090210-9.
[5] 宋少龙, 王晓地, 张哲, 任学冲, 栾本利. 高熵合金高周和低周疲劳行为研究进展[J]. 材料导报, 2025, 39(3): 23100148-12.
[6] 薛赞, 晋玺, 毛周朱, 兰爱东, 王大雨, 乔珺威. 热机械处理提高Cr47Ni33Co10Fe10多组元共晶合金力学性能[J]. 材料导报, 2025, 39(3): 23120100-6.
[7] 田根, 朱甫宏, 王文宇, 王晓明, 赵阳, 韩国峰, 任智强, 朱胜. 基于机器学习的传感器监测在金属激光增材制造中的应用[J]. 材料导报, 2025, 39(2): 23080174-16.
[8] 曹雷刚, 侯鹏宇, 杨越, 蒙毅, 刘园, 崔岩. AlCoCrFeNix高熵合金高温热处理微观组织演变及力学性能[J]. 材料导报, 2025, 39(2): 23120247-7.
[9] 王晓龙, 商怀帅, 陆兆虎, 肖振浩, 徐少辉. FRP筋相关因素对粘结性能的影响综述[J]. 材料导报, 2025, 39(17): 24070179-8.
[10] 葛宇飞, 刘东青, 程海峰, 桂博恒, 王新飞, 贾岩. 基于机器学习的光谱选择性红外辐射材料设计研究进展[J]. 材料导报, 2025, 39(15): 24080168-9.
[11] 闫肃, 豆艳坤, 曹金利, 贺新福. 高熵合金结构及性能的第一性原理模拟预测[J]. 材料导报, 2025, 39(15): 24080206-10.
[12] 韩娟, 龙雨, 徐流杰, 赖伟基, 龙绍檑, 邓澄, 周圣丰, 于振涛, 李卫, 易艳良. 激光熔覆高熵合金涂层的研究进展[J]. 材料导报, 2025, 39(13): 24050222-16.
[13] 麻相龙, 曹睿, 徐灏, 周宁, 高爽, 徐志伟. CoCrFeNiMn高熵合金中间层热等静压扩散连接钛/铝接头组织和性能[J]. 材料导报, 2025, 39(12): 24060014-7.
[14] 薛云龙, 田康康, 刘虎林, 伍媛婷, 袁亮, 高中堂. 无钴共晶高熵合金研究进展[J]. 材料导报, 2025, 39(11): 24050218-10.
[15] 陈自敏, 冉志红, 张艳, 宋泽冈, 袁博. 混凝土裂缝修复用改性环氧树脂的多目标优化[J]. 材料导报, 2025, 39(10): 24040223-9.
[1] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[2] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[3] JIA Zhihong, WENG Yaoyao, DING Lipeng, CHENG Tao, LIU Yingying, LIU Qing. Sn Microalloying for Aluminum Alloys: Strengthening Effects and Mechanisms[J]. Materials Reports, 2017, 31(9): 123 -127 .
[4] WANG Ru, ZHANG Shaokang, WANG Gaoyong. Influence and Mechanism of Mineral Admixtures on Setting and Hardening of Styrene-Butadiene Copolymer/Cement Composite Cementitious Material[J]. Materials Reports, 2017, 31(24): 69 -73 .
[5] DING Yutian, DOU Zhengyi, GAO Yubi, GAO Xin, LI Haifeng, LIU Dexue. In-situ Observation of Solidification Process of GH3625 Superalloy at Different Cooling Rates[J]. Materials Reports, 2017, 31(24): 150 -155 .
[6] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[7] LIU Guoyi, LIU Yuanjun, ZHAO Xiaoming. A Study on Protecting Efficiency to the Radiative Heat of the Outer Fabric for the Fire Proximity Suits[J]. Materials Reports, 2017, 31(22): 116 -120 .
[8] ZHANG Wangxi, WANG Yanzhi, LIANG Baoyan, LI Qiquan, LUO Wei, SUN Changhong, CHENG Xiaozhe, SUN Yuzhou. Review on the Development of Nanodiamonds Used as Functional Materials[J]. Materials Reports, 2018, 32(13): 2183 -2188 .
[9] YANG Fang, ZHANG Long, YU Kun, QI Tianjiao, GUAN Debin. Recent Advances in Humidity Sensitivity of Graphene[J]. Materials Reports, 2018, 32(17): 2940 -2948 .
[10] TIAN Yaqiang, LI Wang, ZHENG Xiaoping, WEI Yingli, SONG Jinying, CHEN Liansheng. Application of Alloy Elements in Quenching and Partitioning Steel:an Overview[J]. Materials Reports, 2019, 33(7): 1109 -1118 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed