Abstract: Asa kind of novel materials, high-entropy alloys have attracted much attention due to their complex compositions and excellent properties. By employing machine learning methods with high-throughput data processing, the key factors dominating the microstructure and performance of high-entropy alloys can be identified and screened, which enables the phase microstructures or the performances to be rapidly predicted and the composition efficiently optimized. In this paper, the recent progresses in high-entropy alloy design assisted by machine learning are reviewed, covering phase microstructure prediction, composition design, mechanical property and performance forecasting, and multi-objective optimization. Former researches indicate that the alloy compositions play crucial roles in determining phase microstructures, and machine learning models incorporated with empirical features can be used for efficiently and accurately predicting the microstructures of high-entropy alloy. Moreover, the machine learning models can search for better composition, microstructure to mechanical properties in the extensive composition space of high-entropy alloys through forward prediction or backward optimized design. Among these, the regression model can effective predictthe mechanical properties of high-entropy alloys, whereas the high-accuracy prediction of properties will promote phase microstructure design. The NSGA-II algorithm, in conjunction with Pareto optimal solutions, generates optimal solution sets through crossover and mutation for multi-objective optimization. Further development of machine learning models requires the establishment of high-quality databases and the improvement of data-driven relationships among compositions, phase microstructures and properties of high entropy alloys.
1 Yeh J W, Chen S K, Lin S J, et al. Advanced Engineering Materials, 2004, 6(5), 299. 2 Cantor B, Chang I T H, Knight P, et al. Materials Science and Enginee-ring, A, 2004, 375, 213. 3 Li T, Wang S, Fan W, et al. Acta Materialia, 2023, 246, 118728. 4 Yang S, Lu J, Xing F, et al. Acta Materialia, 2020, 192, 11. 5 San S, Tong Y, Bei H, et al. Materials & Design, 2021, 209, 110071. 6 Katiyar N K, Goel G, Goel S. Emergent Materials, 2021, 4(6), 1635. 7 Kaufmann K, Vecchio K S. Acta Materialia, 2020, 198, 178. 8 Lee S Y, Byeon S, Kim H S, et al. Materials & Design, 2021, 197, 109260. 9 Liu Y, Zhao T, Ju W, et al. Journal of Materiomics, 2017, 3(3), 159. 10 Li T, Wang S, Fan W, et al. Acta Materialia, 2023, 246, 118728. 11 Huang E W, Lee W J, Singh S S, et al. Materials Science and Engineering, R, Reports, 2022, 147, 100645. 12 Wang Z, Wei J, Feng J, et al. Journal of Micromechanics and Molecular Physics, 2020, 5(2), 2040001. 13 Liu X, Xu P, Zhao J, et al. Journal of Alloys and Compounds, 2022, 921, 165984. 14 Shi L, Liang P C, Ch Q, et al. China Tissue Engineering Research, 2024, 28 (17), 2766(in Chinese). 史榴, 梁鹏晨, 常庆, 等. 中国组织工程研究, 2024, 28(17), 2766. 15 Li F F, Kuang J L, Ji J H, et al. Journal of Engineering Science, 2024, 46 (1), 120(in Chinese). 李丰范, 匡健隆, 季佳浩, 等. 工程科学学报, 2024, 46(1), 120. 16 Liu W J. Design and performance of Fe-Co-Ni-based γ′ phase-strengthened high-entropy alloy based on material genetic engineering technology. Master's Thesis, Guilin University of Electronic Technology, China, 2023(in Chinese). 刘伟杰. 基于材料基因工程技术的Fe-Co-Ni基γ′相强化型高熵合金的设计及性能研究. 硕士学位论文, 桂林电子科技大学, 2023. 17 Zhuang X L. Design and optimization of CoNi-based deformed superalloy composition based on materi-al genetic engineering method. Ph. D. Thesis, University of Science and Technology Beijing, China, 2023(in Chinese). 庄晓黎. 基于材料基因工程方法的CoNi基变形高温合金成分设计与优化. 博士学位论文, 北京科技大学, 2023. 18 Zhou Z, Zhou Y, He Q, et al. Computational Materials, 2019, 5(1), 128. 19 Liu Y, Zhao T, Ju W, et al. Journal of Materiomics, 2017, 3(3), 159. 20 Lin X J, Jiang H T, Li Q, et al. Journal of Engineering Science, 2024, 46 (6), 1120(in Chinese). 林轩杰, 江汉同, 李倩, 等. 工程科学学报, 2024, 46(6), 1120. 21 Lu K L. Machine learning-based material design and industrial optimization. Ph. D. Thesis, Shanghai U-niversity, China, 2021(in Chinese). 卢凯亮. 基于机器学习的材料设计与工业优化. 博士学位论文, 上海大学, 2021. 22 Wen C. Composition design and performance optimization of high-entropy alloys based on machine learning. Ph. D. Thesis, University of Science and Technology Beijing, China, 2022(in Chinese). 文成. 基于机器学习的高熵合金成分设计与性能优化. 博士学位论文, 北京科技大学, 2022. 23 Wen C, Zhang Y, Wang C, et al. Acta Materialia, 2019, 170, 109. 24 Rao Z, Tung P Y, Xie R, et al. Science, 2022, 378(6615), 78. 25 Wang J, Kwon H, Kim H S, et al. Computational Materials, 2023, 9(1), 60. 26 Li Y H, Ye Y C, Zhao F Y, et al. Journal of Materials Engineering, 2024, 52(1), 153(in Chinese). 李亚豪, 叶益聪, 赵凤媛, 等. 材料工程, 2024, 52(1), 153 27 Xue D, Balachandran P V, Hogden J, et al. Nature Communications, 2016, 7(1), 1-9. 28 Li S K, Fan B J, Liu X W, et al. Transactions of Beijing Institute of Technology, 2023, 43(5), 517(in Chinese). 李树奎, 樊博建, 刘兴伟, 等. 北京理工大学学报, 2023, 43(5), 517 29 Li T, Wang S, Fan W, et al. Acta Materialia, 2023, 246, 118728. 30 Wu Q, Wang Z, He F, et al. Journal of Phase Equilibria and Diffusion, 2018, 39, 446. 31 Chen H L, Mao H, Chen Q. Materials Chemistry and Physics, 2018, 210, 279. 32 Li R, Xie L, Wang W Y, et al. Frontiers in Materials, 2020, 7, 290. 33 Soni V K, Sanyal S, Rao K R, et al. Proceedings of the Institution of Mechanical Engineers:Part C, Journal of Mechanical Engineering Science, 2021, 235(22), 6268. 34 Zeng Y, Man M, Ng C K, et al. Materials & Design, 2024, 241, 112929. 35 Vazquez G, Chakravarty S, Gurrola R, et al. Computational Materials, 2023, 9(1), 68. 36 Sun Y, Lu Z, Liu X, et al. Applied Physics Letters, 2021, 119(20), 136. 37 Liu F, Xiao X, Huang L, et al. Materials Today Communications, 2022, 30, 103172. 38 Marquis E A, Bachhav M, Chen Y, et al. Current Opinion in Solid State and Materials Science, 2013, 17(5), 217. 39 Singh A K, Kumar N, Dwivedi A, et al. Intermetallics, 2014, 53, 112. 40 Gao S, Gao Z, Zhao F. Materials Today Communications, 2023, 35, 105894. 41 Guo S, Ng C, Lu J, et al. Journal of Applied Physics, 2011, 109(10), 36. 42 Wang Z, Huang Y, Yang Y, et al. Scripta Materialia, 2015, 94, 28. 43 Wen C, Zhang Y, Wang C, et al. Acta Materialia, 2019, 170, 109. 44 Zhang C, Liu J, Xie S Y, et al. Material Engineering, 2023, 51 (3), 1(in Chinese). 张聪, 刘杰, 解树一, 等. 材料工程, 2023, 51(3), 1. 45 Zhang Meng, Hua Fu'an, Zhao Wei. Materials Reports, 2021, 35 (S1), 331(in Chinese). 张猛, 花福安, 赵巍. 材料导报, 2021, 35(S1), 331. 46 Machaka R. Computational Materials Science, 2021, 188, 110244. 47 Islam N, Huang W, Zhuang H L. Computational Materials Science, 2018, 150, 230. 48 Qu N, Chen Y, Lai Z, et al. Procedia Manufacturing, 2019, 37, 299. 49 Li Y, Guo W. Physical Review Materials, 2019, 3(9), 095005. 50 Gao T C, Gao J B, Li Q, et al. Materials Engineering, 2024, 52(1), 27(in Chinese). 高田创, 高建宝, 李谦, 等. 材料工程, 2024, 52(1), 27. 51 Wang S, Da L I, Xiong J. Transactions of Nonferrous Metals Society of China, 2023, 33(2), 518. 52 Vazquez G, Singh P, Sauceda D, et al. Acta Materialia, 2022, 232, 117924. 53 Bhandari U, Ghadimi H, Zhang C, et al. Materials, 2022, 15(14), 4997. 54 Hayashi G, Suzuki K, Terai T, et al. Science and Technology of Advanced Materials, Methods, 2022, 2(1), 381. 55 Zhang Y F, Ren W, Wang W L, et al. Journal of Physics, 2023, 72 (18), 66(in Chinese). 张逸凡, 任卫, 王伟丽, 等. 物理学报, 2023, 72(18), 66. 56 Labusch R. Physica Status Solidi (b), 1970, 41(2), 659. 57 Yang Zh Y. Hardness prediction of high-entropy alloys based on generative adversarial network data a-ugmentation method. Master's Thesis, Harbin University of Science and Technology, China, 2023(in Chinese). 杨志远. 基于生成对抗网络数据扩充法的高熵合金硬度预测. 硕士学位论文, 哈尔滨理工大学, 2023. 58 Zou R. Hardness prediction of AlCoCrCuFeNi high-entropy alloys based on machine learning. Master's Thesis, Harbin University of Science and Technology, China, 2021(in Chinese). 邹瑞. 基于机器学习的AlCoCrCuFeNi系高熵合金硬度预测. 硕士学位论文, 哈尔滨理工大学, 2021. 59 Bhandari U, Rafi M R, Zhang C, et al. Materials Today Communications, 2021, 26, 101871. 60 Juan Y, Niu G, Yang Y, et al. Transactions of Nonferrous Metals Society of China, 2024, 34(3), 709. 61 Zhang W T, Wang X Q, Zhang F Q, et al. Rare Metals, 2024, 43, 4639. 62 Halpren E, Yao X, Chen Z W, et al. Acta Materialia, 2024, 270, 119841. 63 Yadav T P, Kumar A, Verma S K, et al. Transactions of the Indian National Academy of Engineering, 2022, 7(1), 147. 64 Sun C, Goel R, Kulkarni A R. Langmuir, 2024, 40(7), 3691. 65 He J, Li Z, Lin J, et al. Materials & Design, 2024, 246, 113326. 66 Giles S A, Sengupta D, Broderick S R, et al. npj Computational Materials, 2022, 8(1), 235. 67 Radhika N, Niketh M S, Akhil U V, et al. Results in Engineering, 2024, 23, 102780. 68 Lu Z, Wang J, Wu Y, et al. International Journal of Hydrogen Energy, 2022, 47(81), 345833. 69 Lu Z, Chen Z W, Singh C V. Matter, 2020, 3(4), 1318. 70 Lin M, Zhao R, Liao Y, et al. AIP Advances, 2024, 14(4), 045204. 71 Roy A, Taufique M F N, Khakurel H, et al. npj Materials Degradation, 2022, 6(1), 9. 72 Wei L, Yuying Y. Journal of Materials Processing Technology, 2008, 208(1-3), 499. 73 Menou E, Toda-Caraballo I, Rivera-Díaz-del P E J, et al. Materials & Design, 2018, 143, 185. 74 Li Z, Birbilis N. Integrating Materials and Manufacturing Innovation, 2024, 13, 435. 75 Guo T, Wu L, Li T. Small, 2021, 17(42), 2102972. 76 Cheng H, Ge M L, Si T Y, et al. Materials Research and Application, 2023, 17(6), 1070(in Chinese). 程洪, 葛美伶, 司天宇, 等. 材料研究与应用, 2023, 17(6), 1070.