Please wait a minute...
材料导报  2025, Vol. 39 Issue (17): 24090046-12    https://doi.org/10.11896/cldb.24090046
  金属与金属基复合材料 |
金属镓提取工艺研究进展
张仲林3,4, 于昊松3,4, 杨斌1,2,3,4, 田阳1,2,3,4,*, 徐宝强1,2,3,4
1 昆明理工大学云南省有色金属真空冶金重点实验室,昆明 650093
2 昆明理工大学省部共建复杂有色金属资源清洁利用国家重点实验室,昆明 650093
3 昆明理工大学真空冶金国家工程研究中心,昆明 650093
4 昆明理工大学冶金与能源工程学院,昆明 650093
Research Progress on Gallium Metal Extraction Process
ZHANG Zhonglin3,4, YU Haosong3,4, YANG Bin1,2,3,4, TIAN Yang 1,2,3,4,*, XU Baoqiang1,2,3,4
1 Key Laboratory for Nonferrous Vacuum Metallurgy of Yunnan Province, Kunming University of Science and Technology, Kunming 650093, China
2 State Key Laboratory of Complex Non-ferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, China
3 National Engineering Research Center of Vacuum Metallurgy, Kunming University of Science and Technology, Kunming 650093, China
4 Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
下载:  全 文 ( PDF ) ( 22347KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 镓作为一种战略金属,广泛应用于现代军事、无线通讯、生物、太阳能电池、半导体等诸多新兴领域,在航空航天中也具有重要地位。镓主要伴生于铝土矿、闪锌矿、粉煤灰等,具有低熔点、高沸点等特性。随着砷化镓产品的使用,不可避免地产生大量废料,这些废料中包含丰富的镓资源,有必要对其进行回收以减少资源浪费。本文从镓的来源角度出发,详细综述了从矿物加工副产品提取原生镓的技术现状与从砷化镓废料中再生镓的现有方法,归纳总结了各方法的工艺特点及技术指标,并展望了镓的提取与二次资源回收技术的未来发展方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张仲林
于昊松
杨斌
田阳
徐宝强
关键词:    资源利用  砷化镓废料  提取  再生    
Abstract: Gallium, as a strategic metal, is widely used in many emerging fields such as modern military, wireless communications, biology, solar cells, semiconductors, etc. It also has an important position in aerospace. Gallium is mainly associated with bauxite, sphalerite, fly ash, etc. , with low melting point, high boiling point and other characteristics. With the use of gallium arsenide products, it is inevitable to produce a large number of wastes, these wastes contain rich gallium resources, it is necessary to recycle it to reduce the waste of resources. In this paper, from the point of view of the source of gallium, a detailed review of the extraction of primary gallium from mineral processing by-products of the current state of the art and the existing methods of gallium regeneration from gallium arsenide waste, summarizes the process characteristics and technical indicators of each method, and looks forward to the extraction of gallium and the future direction of the development of the technology of se-condary resource recovery.
Key words:  gallium    resource utilization    GaAs waste    extraction    regeneration
发布日期:  2025-08-28
ZTFLH:  TF843.1  
基金资助: 云南省基础研究计划项目(202301AS070054)
通讯作者:  *田阳,博士,昆明理工大学冶金与能源工程学院教授、博士研究生导师。目前主要从事有色金属真空冶金、高纯金属材料制备、二次资源回收利用等方面的研究工作。emontian@hotmail.com   
作者简介:  张仲林,昆明理工大学冶金与能源工程学院硕士研究生。在田阳教授的指导下开展砷化镓二次资源回收利用的研究。
引用本文:    
张仲林, 于昊松, 杨斌, 田阳, 徐宝强. 金属镓提取工艺研究进展[J]. 材料导报, 2025, 39(17): 24090046-12.
ZHANG Zhonglin, YU Haosong, YANG Bin, TIAN Yang, XU Baoqiang. Research Progress on Gallium Metal Extraction Process. Materials Reports, 2025, 39(17): 24090046-12.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24090046  或          https://www.mater-rep.com/CN/Y2025/V39/I17/24090046
1 Zhang L M, Zhang H, Liang Q, et al. Mineral Exploration, 2022, 13(8), 1235(in Chinese).
张丽曼, 张会, 梁倩, 等. 矿产勘查, 2022, 13(8), 1235.
2 Zhang J, Li T, Pang J, et al. Waste Management, 2023, 155, 153.
3 Liu M, Li Y L Zhang R, et al. Natural Resources Information, 2020(10), 50(in Chinese).
刘麦, 李伊兰, 张睿, 等. 国土资源情报, 2020, 10, 50.
4 Zhao Z, Yang Y, Xiao Y, et al. Hydrometallurgy, 2012, 125, 115.
5 Wang Y, Pan Z, Yan Y, et al. Nanophotonics, 2024, 13(18), 3207.
6 Moon J, Wong J, Grabar B, et al. In:2019 IEEE MTT-S International Microwave Symposium (IMS). Massachusetts, 2019, pp. 1130.
7 Papamichail A, Persson A R, Ricther S, et al. In:Conference Record of the 2022 IEEE Compound Semiconductor Week (CSW). Michigan, 2022, pp. 1.
8 Frenzel M, Ketris M P, Seifert T, et al. Resources Policy, 2016, 47, 38.
9 Zou M J, Li D, Tian Q H, et al. Nonferrous Metals Science and Enginee-ring, 2020, 11(5), 45(in Chinese).
邹铭金, 李栋, 田庆华, 等. 有色金属科学与工程, 2020, 11(5), 45.
10 Qin S J, Sun Y Z, Li Y H, et al. Earth-Science Reviews, 2015, 150, 95.
11 Zhang K F, Liu Z Q, Chen S C. Materials Research and Application, 2021, 15(1), 77(in Chinese).
张魁芳, 刘志强, 陈少纯. 材料研究与应用, 2021, 15(1), 77.
12 Yang Y F, Leng G Q, Chen B L, et al. The Chinese Journal of Process Engineering, 2021, 21(6), 639(in Chinese).
杨依帆, 冷国琴, 陈博利, 等. 过程工程学报, 2021, 21(6), 639.
13 Lu F H, Xiao T F, Lin J, et al. Hydrometallurgy, 2017, 174, 105.
14 Van Den Bossche A, Vereycken W, Vander Hoogerstraete T, et al. ACS Sustainable Chemistry & Engineering, 2019, 7(17), 14451.
15 Nagy S, Bokányi L, Gombkötö I, et al. Archives of Metallurgy and Materials, 2017, 62(2B) 1161.
16 Song S J, Le M N, Lee M S. Processes, 2020, 8(11), 1347.
17 Nguyen T H, Lee M S. Mineral Processing and Extractive Metallurgy Review, 2019, 40(4), 278.
18 Geidarov A A. Russian Journal of Applied Chemistry, 2008, 81, 2084.
19 Liu F P, Liu Z P, Li Y P, et al. Hydrometallurgy, 2017, 171, 149.
20 Ahmed I M, El-Nadi Y A, El-Hefny N E. Hydrometallurgy, 2013, 131, 24.
21 Zhou T L, Zhong X, Zheng L A. Chinese Journal of Rare Metals, 1980(1), 22(in Chinese).
周太立, 钟祥, 郑隆鳌. 稀有金属, 1980(1), 22.
22 Xiao H L. Rare Metals and Cemented Carbides, 2003, 31(2), 5(in Chinese).
肖华利. 稀有金属与硬质合金, 2003, 31(2), 5.
23 Nusen S, Chairuangsri T, Zhu Z, et al. Hydrometallurgy, 2016, 160, 137.
24 El Wakil A F, Zaki S A, Ismaiel D A, et al. Hydrometallurgy, 2023, 216, 106022.
25 Wang X Y, Wang Y D, Jin W X. Journal of Jilin Normal University(Natural Science Edition), 2007, 28(4), 35(in Chinese)
王秀艳, 王雨东, 金文旭. 吉林师范大学学报(自然科学版), 2007, 28(4), 35.
26 Zhang K F, Cao Z Y, Xiao L S, et al. Mining and Metallurgical Engineering, 2014(6), 90(in Chinese).
张魁芳, 曹佐英, 肖连生, 等. 矿冶工程, 2014(6), 90.
27 Zhao Z S, Cui L, Guo Y X, et al. Chemical Engineering Journal, 2020, 381, 122699.
28 Li H C, Zhou C S, Fu B. Nonferrous Metals Engineering, 2001, 53(1), 70(in Chinese).
李华昌, 周春山, 符斌. 有色金属, 2001, 53(1), 70.
29 Raj P, Patel M, Karamalidis A K. Journal of Environmental Chemical Engineering, 2023, 11(5), 110790.
30 Liu J, Yan Y T, Shao H X. Chemistry, 2001, 64(2), 119(in Chinese).
刘建, 闫英桃, 邵海欣, 等. 化学通报, 2001, 64(2), 119.
31 Liu J S, Chen H, Chen X Y, et al. Hydrometallurgy, 2006, 82(3-4), 137.
32 Meng J J, He C L, Li Y J, et al. Microporous and Mesoporous Materials, 2021, 314, 110859.
33 He C L, Liu Y, Zheng C H, et al. Journal of Environmental Chemical Engineering, 2023, 11(5), 110871.
34 Dong W X, Zhang G H, Zhu J F. Journal of Shaanxi University of Science & Technology(Natural Science Edition), 2010, 28(2), 96(in Chinese).
董惟昕, 张光华, 朱军峰. 陕西科技大学学报(自然科学版), 2010, 28(2), 96.
35 Liu Z B, Zhang J, Jiang S, et al. Talanta, 2023, 265, 124792.
36 Li Y J, Chen X X, Guo B, et al. Journal of Water Process Engineering, 2024, 60, 105191.
37 Qu L Y, Li L S, Wu Y S, et al. The Journal of The Minerals, Metals & Materials Society, 2024, 76(10), 6084.
38 Kou Z J, Bian W, Wang C H. Chemical Engineering Journal Advances, 2022, 11, 100317.
39 Rao K S, Sarangi D, Dash P K, et al. Journal of Chemical Technology and Biotechnology, 2003, 78(5), 555.
40 陈琦, 李显坪, 唐宝发, 等. 中国专利, CN202210902839. 9, 2022.
41 Long H M, Zhao Z, Chai Y Q, et al. Industrial & Engineering Chemistry Research, 2015, 54(33), 8025.
42 Zhao Z, Li X H, Chai Y Q, et al. ACS Sustainable Chemistry & Engineering, 2016, 4(1), 53.
43 Chen L X, Xu S F, Li J H. Chemical Society Reviews, 2011, 40(5), 2922.
44 Zhu L. Construction of three-dimensional ion-imprinted mesoporous silicon-based materials and their adsorption behavior on rhenium and gallium. Master's Thesis, Liaoning University, China, 2019(in Chinese).
朱龙. 三维离子印迹介孔硅基材料的构筑及对铼、镓吸附行为的研究. 硕士学位论文, 辽宁大学, 2019.
45 Gao L H, Wang L Z, Cao Y J, et al. Minerals Engineering, 2022, 176, 107354.
46 Li M. Shanxi Metallurgy, 2014, 37(1), 9(in Chinese).
李敏. 山西冶金, 2014, 37(1), 9.
47 Figueira M M, Volesky B, Ciminelli V S T, et al. Water Research, 2000, 34(1), 196.
48 Vetrivel S A, Diptanghu M, Ebhin M R, et al. Remediation-The Journal of Environmental Cleanup Costs Technologies & Techniques, 2017, 27(3), 81.
49 Wang J, Bao Y H, Ma R, et al. Hydrometallurgy, 2018, 177, 140.
50 Saikia S, Costa R B, Sinharoy A, et al. Journal of Environmental Ma-nagement, 2022, 317, 115396.
51 Snegirev V A, Metallurgist, 2021, 65, 794.
52 Pourhossein F, Mousavi S M, Beolchini F. Resources Conservation and Recycling, 2022, 182, 106306.
53 Zheng K, Benedetti M F, van Hullebusch E D. Journal of Environmental Management, 2023, 347, 119043.
54 Eheliyagoda D, Zeng X, Wang Z, et al. Science of the Total Environment, 2019, 689, 332.
55 Dun Y R, Jing H P, Luosang C R, et al. Conservation and Utilization of Mineral Resources, 2019, 39(5), 9(in Chinese).
敦妍冉, 荆海鹏, 洛桑才仁, 等. 矿产保护与利用, 2019, 39(5), 9.
56 Xu L, Xu S Q. Materials China, 1999(9), 11(in Chinese).
许菱, 许孙曲. 稀有金属快报, 1999(9), 11.
57 谭明亮, 李胜春, 潘勇进, 等. 中国专利, CN201810652482. 7, 2018.
58 Hu S H, Xie M Y, Hsieh Y M, et al. Environmental Progress & Sustai-nable Energy, 2015, 34(2), 471.
59 Cheng T H, Liu C J, Tsai T Y, et al. Processes, 2019, 7(12), 921.
60 Maneesuwannarat S, Vangnai A S, Yamashita M, et al. Process Safety and Environmental Protection, 2016, 99, 80.
61 Monteiro O R, Evans J W. Journal of Vacuum Science & Technology A, 1989, 7(1), 49.
62 Swain B, Lee D H, Lee C G, et al. Waste and Biomass Valorization, 2021(5), 12.
63 Dai Y N, Yang B. Vacuum metallurgy for non-ferrous metals , Metallurgical Industry Press, China, 2009(in Chinese).
戴永年, 杨斌. 有色金属真空冶金, 冶金工业出版社, 2009.
64 Chen W T, Tsai L C, Tsai F C, et al. Clean-Soil Air Water, 2012, 40(5), 531.
65 Zhan L, Li J G, Xie B, et al. ACS Sustainable Chemistry & Engineering, 2017, 5(4), 3179.
66 Sturgill J A, Swartzbaugh J T, Randall P M. Clean Technologies and Environmental Policy, 2000, 2, 18.
67 Liu D C, Yang B, Dai Y N, et al. Vacuum, 2004, 41(3), 18(in Chinese).
刘大春, 杨斌, 戴永年, 等. 真空, 2004, 41(3), 18.
68 Liu D C, Zha G Z, Hu L, et al. In:Energy Technology 2018:Carbon Dioxide Management and Other Technologies. Shandong, 2018, pp. 319.
69 Hu L, Liu D C, Chen X M, et al. The Chinese Journal of Nonferrous Metals, 2014(9), 2410(in Chinese).
胡亮, 刘大春, 陈秀敏, 等. 中国有色金属学报, 2014(9), 2410.
70 Yu H S, Chen X M, Xu B Q, et al. Journal of Environmental Management, 2024, 352, 120049.
[1] 钱如胜, 叶志波, 张云升, 赵儒泽, 孔德玉, 杨杨, 聂海波. 固碳强化再生粗骨料对其混凝土力学强度及体积稳定性的影响[J]. 材料导报, 2025, 39(9): 24020155-6.
[2] 董硕, 郑立森, 史奉伟, 王来, 刘哲. 钢纤维地聚物再生混凝土力学性能及强度指标换算[J]. 材料导报, 2025, 39(7): 24100219-8.
[3] 邹桂莲, 焦有晴, 张园, 虞将苗, 韩骜. 基于激光共聚焦扫描显微镜的新旧沥青融合及均质化程度研究[J]. 材料导报, 2025, 39(5): 24010257-6.
[4] 纪泳丞, 王大洋, 贾艳敏. PVA纤维增强砖骨料再生混凝土数值模拟及尺寸效应研究[J]. 材料导报, 2025, 39(3): 23100214-11.
[5] 李克亮, 颜辰, 陈希, 陈爱玖, 杜晓蒙, 李伟华. 三种微生物矿化修复再生混凝土裂缝效果对比分析[J]. 材料导报, 2025, 39(2): 23120160-8.
[6] 田根, 朱甫宏, 王文宇, 王晓明, 赵阳, 韩国峰, 任智强, 朱胜. 基于机器学习的传感器监测在金属激光增材制造中的应用[J]. 材料导报, 2025, 39(2): 23080174-16.
[7] 张婷, 吴翠玲, 籍冰晗, 韩梦瑶, 杜雪岩. 再生纤维素基三明治结构复合薄膜的电磁屏蔽性能[J]. 材料导报, 2025, 39(2): 23100181-6.
[8] 海然, 崔力, 翟胜田, 刘俊霞, 惠存, 王超圣. 基于文献聚类分析的再生混凝土抗压强度及耐久性最新研究进展[J]. 材料导报, 2025, 39(17): 24050154-9.
[9] 许开成, 王文鹏, 张立卿. 不同来源粗骨料混合再生混凝土抗压强度及其预测模型建立[J]. 材料导报, 2025, 39(12): 23110068-9.
[10] 周宏元, 母崇元, 王小娟, 李润琳, 曹万林. 地聚物再生混凝土抗压强度的离散性分析[J]. 材料导报, 2025, 39(1): 23100132-8.
[11] 刘超, 蒙毅升, 武怡文, 刘化威. 3D打印再生砂浆早期流变性能及结构经时演化研究[J]. 材料导报, 2024, 38(9): 22100157-8.
[12] 陆奔, 李安敏, 杨树靖, 袁子豪, 惠佳琪. 磁性镓基液态金属复合材料的研究进展[J]. 材料导报, 2024, 38(8): 22090217-15.
[13] 杨政, 代林晴, 张利波, 张辉, 程越, 周亮, 苏文婷. 硒提取与纯化工艺研究进展[J]. 材料导报, 2024, 38(5): 22080188-14.
[14] 陈立俊, 李滢, 陈文浩. 再生微粉与矿物掺合料对混凝土力学性能及微观结构的影响[J]. 材料导报, 2024, 38(5): 22070218-6.
[15] 都思哲, 张淼, 张玉, Selyutina Nina, Smirnov Ivan, 马树娟, 董晓强, 刘元珍. 基于CT图像三维重建的高温下再生混凝土孔隙特征研究[J]. 材料导报, 2024, 38(5): 22060128-11.
[1] Pei HE, Weizhi YAO, Jianming LYU, Bo GAO, Xianrong LI. Radiation Resistance Design and Nanoscale Second-phase Particles Characterization for ODS Steels: a Review[J]. Materials Reports, 2018, 32(1): 34 -40 .
[2] ZHANG Wenpei, LI Huanhuan, HU Zhili, QIN Xunpeng. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting[J]. Materials Reports, 2017, 31(13): 85 -89 .
[3] YANG Xiaojie, DONG Binghai, CHEN Fengxiang, WAN Li, ZHAO Li, WANG Shimin. One-dimensional TiO2 Photoanodes for Dye-sensitized Solar Cells: Fabrication and Applications[J]. Materials Reports, 2017, 31(17): 138 -145 .
[4] TAO Lei, ZHENG Yunwu,DI Mingwei, ZHANG Yanhua, ZHENG Zhifeng. Preparation of Porous Carbon Nanofiber from Liquid Phenolic Resin and Its Characterization[J]. Materials Reports, 2017, 31(10): 101 -106 .
[5] ZHU Lijuan, WANG Min, GU Zhengwei, HE Lingling. Research on Stretch Bending Forming of Stainless Steel Curved Beam[J]. Materials Reports, 2017, 31(24): 179 -181 .
[6] SU Lan, ZHANG Chubo, WANG Zhen, MI Zhenli. Finite Element Simulation of Electromagnetic Induction Heating in Hot Metal Gas Forming[J]. Materials Reports, 2017, 31(24): 182 -177 .
[7] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[8] FU Yu, HE Junbao, ZHANG Ping, LENG Yumin, MA Benyuan, LI Jiyan. Single Crystal Growth and Physical Properties of Layered Transitional Metal Bismuthide BaAg2-δBi2[J]. Materials Reports, 2018, 32(12): 2043 -2046 .
[9] LIU Huan, HUA Zhongsheng, HE Jiwen, TANG Zetao, ZHANG Weiwei, LYU Huihong. Indium Recovery from Waste Indium Tin Oxide: a Technological Review[J]. Materials Reports, 2018, 32(11): 1916 -1923 .
[10] HUANG Wenxin, LI Jun, XU Yunhe. Research Progress on Manganese Dioxide Based Supercapacitors[J]. Materials Reports, 2018, 32(15): 2555 -2564 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed