Please wait a minute...
材料导报  2025, Vol. 39 Issue (17): 24080230-7    https://doi.org/10.11896/cldb.24080230
  无机非金属及其复合材料 |
UHPC加固石拱桥试验与极限承载力计算
王宗山1,2, 杨俊1,*, 周建庭1, 张洪1
1 重庆交通大学山区桥梁与隧道国家重点实验室,重庆 400074
2 重庆交通建设管理有限公司,重庆 401120
Test and Ultimate Bearing Capacity Calculation of Stone Arch Bridges Strengthened with UHPC
WANG Zongshan1,2, YANG Jun1,*, ZHOU Jianting1, ZHANG Hong1
1 State Key Laboratory of Mountain Bridge and Tunnel Engineering, Chongqing Jiaotong University, Chongqing 400074, China
2 Chongqing Transportation Construction Management Co., Ltd., Chongqing 401120, China
下载:  全 文 ( PDF ) ( 27182KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为明晰UHPC对石拱桥承载能力的提升效果,开展UHPC加固石砌拱桥全过程破坏试验和极限承载力计算分析。设计制作四组包含不同UHPC材料种类、界面处理方式和加固层厚度的石砌拱,分析了L/4处集中荷载作用下结构破坏模式、截面应变发展、裂缝发展以及极限承载力。试验结果表明,未加固拱呈现四铰破坏;加固后以四铰破坏为主,部分试件出现四铰破坏和界面脱粘的混合破坏模式。UHPC加固能有效提高石砌拱极限承载力,经3 cm的UHPC层加固后,试件的极限承载能力由0.46 kN 提升至15 kN以上;UHPC的抗拉强度由6.21 MPa提高到8.01 MPa后,极限承载力由14.13 kN提升至22.27 kN。基于极限分析法建立的极限承载力计算公式,计算误差均在25%以内,可较好预测加固石砌拱极限承载能力。参数分析表明,加固拱极限承载力随着UHPC加固层厚度的增大呈线性增大,受到砌体抗压强度的制约,增大UHPC抗拉强度并不会显著提高加固拱的极限承载力,应根据砌体的抗压强度科学选择UHPC材料。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王宗山
杨俊
周建庭
张洪
关键词:  桥梁工程  石拱桥  UHPC加固  极限承载力  模型试验    
Abstract: To clarify the effect of UHPC on enhancing the bearing capacity of masonry arch bridges, a full process failure test and ultimate bearing capacity calculation analysis were conducted on stone arch bridges strengthened with UHPC. Four sets of stone arches with different types of UHPC materials, interface treatment methods and reinforcement layer thickness were designed and prepared. The structural failure mode, section strain development, crack propagation, and ultimate bearing capacity under concentrated load at the L/4 location were analyzed. The experimental results show that the unreinforced masonry arch exhibits a four-hinge failure mode, while the reinforced masonry arch exhibits two failure modes, one is a four-hinge failure and the other is a composite failure mode of four-hinge failure and interface debonding. The UHPC layer can effectively improve the ultimate bearing capacity and crack resistance of stone arches. The ultimate bearing capacity of unreinforced stone arches is only 0.46 kN, after reinforced with a 3 cm UHPC layer at the intrados, the ultimate bearing capacity of the specimens reaches more than 15 kN. While the tensile strength of UHPC increases from 6.21 MPa to 8.01 MPa, the average peak load of the reinforced stone arc increases from 14.13 kN to 22.27 kN. The calculation formula for the ultimate bearing capacity based on limit analysis method has a calculation error within 25%, which can predict the bearing capacity of reinforced stone masonry arches well. Parameter analysis shows that the ultimate bearing capacity of reinforced arch structures increases linearly with the increase of UHPC reinforcement layer thickness. However, due to the constraint of masonry compressive strength, to increase UHPC tensile strength does not significantly improve the ultimate bearing capacity, the material type of UHPC should be scientifically selected based on the compressive strength of masonry.
Key words:  bridge engineering    stone bridges    UHPC reinforcement    ultimate bearing capacity    model test
发布日期:  2025-08-28
ZTFLH:  U444  
基金资助: 国家自然科学基金(52208230;52278293);省部共建山区桥梁及隧道工程国家重点实验室开放基金(SKLBT-2208)
通讯作者:  *杨俊,重庆交通大学土木工程学院教授、博士研究生导师。目前主要从事桥梁加固与工程结构性能提升、桥梁维护与结构分析等方面的研究工作。yangjun@cqjtu.edu.cn   
作者简介:  王宗山,博士,高级工程师。现在重庆交通大学进行博士后研究工作,主要从事桥梁加固与工程结构性能提升、桥梁新结构与超高性能混凝土材料研发与应用等。
引用本文:    
王宗山, 杨俊, 周建庭, 张洪. UHPC加固石拱桥试验与极限承载力计算[J]. 材料导报, 2025, 39(17): 24080230-7.
WANG Zongshan, YANG Jun, ZHOU Jianting, ZHANG Hong. Test and Ultimate Bearing Capacity Calculation of Stone Arch Bridges Strengthened with UHPC. Materials Reports, 2025, 39(17): 24080230-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24080230  或          https://www.mater-rep.com/CN/Y2025/V39/I17/24080230
1 Xu Y. World Bridges, 2013, 41(3), 85 (in Chinese).
徐勇. 世界桥梁, 2013, 41(3), 85.
2 Zhang M, Qian R J, Zhang F, et al. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(1), 210 (in Chinese).
张淼, 钱永久, 张方, 等. 吉林大学学报(工学版), 2020, 50(1), 210.
3 San C L, Ma X J. Journal of China & Foreign Highway, 2019, 39(5), 156 (in Chinese).
单成林, 马兴键. 中外公路, 2019, 39(5), 156.
4 Qiao W J, Sun K D, Song Y F, et al. China Journal of Highway and Transport, 2016(1), 89 (in Chinese).
乔文靖, 孙克东, 宋一凡, 等. 中国公路学报, 2016(1), 89.
5 George J, Menon A. Journal of Bridge Engineering, 2021, 26(6), 6021005.
6 Angiolilli M, Gregori A, Pathirage M, et al. Engineering Structures, 2020, 224, 111102.
7 Baraccani S, Zauli L, Theodossopoulos D, et al. Construction and Building Materials, 2020, 265, 120305.
8 Simoncello N, Zampieri P, Gonzalez-libreros J, et al. Composites Part B:Engineering, 2019, 177, 107386.
9 Cao J, Shao X, Zhan J, et al. Engineering Structures, 2023, 289, 116122.
10 Zhang X, Li X, Liu R, et al. Engineering Structures, 2020, 213, 110569.
11 Liu C, Ma R J, Wang J Y, et al. Bridge Construction, 2017, 47(5), 112(in Chinese).
刘超, 马汝杰, 王俊颜, 等. 桥梁建设, 2017, 47(5) 112.
12 Tazarv M, Bohn L, Wehbe N. Journal of Bridge Engineering, 2019, 24(6), 4019044.
13 Gao X, Shen S, Chen G, et al. Engineering Structures, 2023, 278, 115315.
14 San B, Liu Z, Xiao Y, et al. Journal of Hunan University(Natural Sciences), 2017, 44(3), 88 (in Chinese).
单波, 刘志, 肖岩, 等. 湖南大学学报(自然科学版), 2017, 44(3), 88.
15 Cui D Y, Liu F Z, Han Y, et al. Construction Technology, 2018, 47(21), 140 (in Chinese).
崔登云, 刘福忠, 韩瑜, 等. 施工技术, 2018, 47(21), 140.
16 Wang Z S, Zhou J T, Yang J, et al. World Bridges, 2022, 50(2), 105 (in Chinese).
王宗山, 周建庭, 杨俊, 等. 世界桥梁, 2022, 50(2), 105.
17 Sun C, Liu M, Chen B C, et al. Journal of Fuzhou University (Natural Science Edition), 2012, 40(3), 376 (in Chinese).
孙潮, 刘明, 陈宝春, 等. 福州大学学报(自然科学版), 2012, 40(3), 376.
18 Yang J, Zhou J T, Cheng J, et al. Bridge Construction, 2018, 48(4), 74 (in Chinese).
杨俊, 周建庭, 程俊, 等. 桥梁建设, 2018, 48(4), 74.
19 Yang J, Chen R, Zhang Z, et al. Engineering Structures, 2023, 279, 115611.
20 Wang Z, Yang J, Zhou J, et al. Structures, 2022, 43, 805.
[1] 袁明, 朱海乐, 颜东煌, 袁晟, 黄练, 刘昀. 钢纤维埋深与类型影响钢纤维-UHPC基体界面粘结性能的试验研究[J]. 材料导报, 2023, 37(16): 22010230-9.
[2] 苏昊, 杨俊, 周建庭, 王劼耘, 王宗山, 马兴林. 基于DIC的UHPC加固锈蚀钢筋混凝土柱轴心受压性能研究[J]. 材料导报, 2021, 35(z2): 194-199.
[3] 周建庭, 胡天祥, 杨俊, 周璐, 孙航行. 键槽构造UHPC-NC界面黏结性能试验研究[J]. 材料导报, 2021, 35(16): 16050-16057.
[4] 夏娴, 李地红, 高群, 代函函, 于海洋. 基于ABAQUS的镶嵌式混凝土加固、修复技术研究[J]. 材料导报, 2019, 33(z1): 269-273.
[5] 邵旭东, 邱明红, 晏班夫, 罗军. 超高性能混凝土在国内外桥梁工程中的研究与应用进展*[J]. CLDB, 2017, 31(23): 33-43.
[1] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[2] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[3] JIA Zhihong, WENG Yaoyao, DING Lipeng, CHENG Tao, LIU Yingying, LIU Qing. Sn Microalloying for Aluminum Alloys: Strengthening Effects and Mechanisms[J]. Materials Reports, 2017, 31(9): 123 -127 .
[4] WANG Ru, ZHANG Shaokang, WANG Gaoyong. Influence and Mechanism of Mineral Admixtures on Setting and Hardening of Styrene-Butadiene Copolymer/Cement Composite Cementitious Material[J]. Materials Reports, 2017, 31(24): 69 -73 .
[5] DING Yutian, DOU Zhengyi, GAO Yubi, GAO Xin, LI Haifeng, LIU Dexue. In-situ Observation of Solidification Process of GH3625 Superalloy at Different Cooling Rates[J]. Materials Reports, 2017, 31(24): 150 -155 .
[6] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[7] LIU Guoyi, LIU Yuanjun, ZHAO Xiaoming. A Study on Protecting Efficiency to the Radiative Heat of the Outer Fabric for the Fire Proximity Suits[J]. Materials Reports, 2017, 31(22): 116 -120 .
[8] ZHANG Wangxi, WANG Yanzhi, LIANG Baoyan, LI Qiquan, LUO Wei, SUN Changhong, CHENG Xiaozhe, SUN Yuzhou. Review on the Development of Nanodiamonds Used as Functional Materials[J]. Materials Reports, 2018, 32(13): 2183 -2188 .
[9] YANG Fang, ZHANG Long, YU Kun, QI Tianjiao, GUAN Debin. Recent Advances in Humidity Sensitivity of Graphene[J]. Materials Reports, 2018, 32(17): 2940 -2948 .
[10] TIAN Yaqiang, LI Wang, ZHENG Xiaoping, WEI Yingli, SONG Jinying, CHEN Liansheng. Application of Alloy Elements in Quenching and Partitioning Steel:an Overview[J]. Materials Reports, 2019, 33(7): 1109 -1118 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed