Please wait a minute...
CLDB  2017, Vol. 31 Issue (23): 33-43    https://doi.org/10.11896/j.issn.1005-023X.2017.023.004
  专题栏目:超高性能混凝土及其工程应用 |
超高性能混凝土在国内外桥梁工程中的研究与应用进展*
邵旭东1, 2, 邱明红1, 2, 晏班夫1, 2, 罗军1, 2
1 湖南大学土木工程学院,长沙410082;
2 湖南大学风工程与桥梁工程湖南省重点实验室,长沙410082
A Review on the Research and Application of Ultra-high Performance Concrete in Bridge Engineering Around the World
SHAO Xudong1, 2, QIU Minghong1, 2, YAN Banfu1, 2, LUO Jun1, 2
1 College of Civil Engineering, Hunan University, Changsha 410082;
2 Hunan Province Key Laboratory of Wind and Bridge Engineering, Hunan University, Changsha 410082
下载:  全 文 ( PDF ) ( 4061KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 超高性能混凝土(UHPC)是一种新型的水泥基复合材料,因具有优异的力学性能和耐久性能而受到了广泛关注,并开始应用于桥梁工程领域。着重介绍了UHPC在国内外桥梁工程中的应用进展,并分析了其在国内桥梁工程中的应用前景。据不完全统计,截至2016年底,国内外已有超过400座桥梁采用UHPC作为主要或部分建筑材料。国内学者针对UHPC的优异性能,开展了一系列的UHPC桥梁结构研发工作,结果表明UHPC结构可有效减轻结构自重,提高结构的跨越能力,适合装配化施工,有望解决现有常规桥梁结构存在的诸多技术难题,具有广阔的应用前景。目前,UHPC在国内桥梁工程中已逐渐开始获得应用,今后应进一步结合实际工程需要开展应用技术研究,形成应用指南或技术标准。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
邵旭东
邱明红
晏班夫
罗军
关键词:  超高性能混凝土(UHPC)  桥梁工程  应用    
Abstract: Ultra-high performance concrete (UHPC), as a new type of cement-based composite material, has captured extensive attention due to its excellent mechanical properties and durability, also has begun to achieve successful application to the field of bridge engineering. This paper places emphases on introducing the application of UHPC and its prospect in bridge engineering. The incomplete statistics indicate that, in the end of 2016, there were more than 400 bridges employing UHPC as a major or part of the component materials in the world. A series of research on the excellent properties of UHPC imply that the UHPC-based structure can effectively reduce the structural weight and improve the spanning ability of structure, and is suitable for assembly construction. The UHPC bridge is expected to solve the existing technical problems, and shows widespread application prospects. At present, UHPC bridge project has gradually been utilized in China's bridge engineering, and the next task is the establishment of technical guidelines and specifications based on practical engineering requirements.
Key words:  ultra-high performance concrete (UHPC)    bridge engineering    application
出版日期:  2017-12-10      发布日期:  2018-05-08
ZTFLH:  U448.38  
基金资助: *国家自然科学基金(51378194); 广东省交通运输厅科技项目(2013-02-036); 湖南省研究生科研创新项目(CX2017B119)
作者简介:  邵旭东:男,1961年生,教授,博士研究生导师,主要从事新型材料在桥梁结构应用方面的研究 E-mail:shaoxd@hnu.edu.cn
引用本文:    
邵旭东, 邱明红, 晏班夫, 罗军. 超高性能混凝土在国内外桥梁工程中的研究与应用进展*[J]. CLDB, 2017, 31(23): 33-43.
SHAO Xudong, QIU Minghong, YAN Banfu, LUO Jun. A Review on the Research and Application of Ultra-high Performance Concrete in Bridge Engineering Around the World. Materials Reports, 2017, 31(23): 33-43.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.023.004  或          https://www.mater-rep.com/CN/Y2017/V31/I23/33
1 邵旭东. 桥梁工程[M]. 第4版. 北京:人民交通出版社股份有限公司,2016:66.
2 徐君兰, 孙淑红. 钢桥[M]. 第2版. 北京:人民交通出版社,2011:1.
3 聂建国. 钢-混凝土组合结构桥梁[M]. 北京:人民交通出版社,2011:1.
4 李宏江, 赵尚传, 李万恒, 等. 既有装配式梁桥横向连接构造评价技术进展[J]. 中外公路, 2014, 34(2): 124.
5 Wei X Q. Researh on the cause of cracks and reasonable structure about highway T-beam bridge[D]. Chongqing: Chongqing Jiaotong University, 2012(in Chinese).
魏晓全. 公路T梁桥裂缝成因分析及其合理构造研究[D]. 重庆: 重庆交通大学, 2012.
6 Lou Z H. Main faults in large span beam bridges[J]. J Highway Transportation Res Develop, 2006, 23(4):84(in Chinese).
楼庄鸿. 大跨径梁式桥的主要病害[J]. 公路交通科技, 2006, 23(4):84.
7 Wang G L, Xie J, Fu Y F. Investigation research on crack of long-span prestressed concrete box girder bridges in service[J]. J Highway Transportation Res Develop, 2008, 25(8):52(in Chinese).
王国亮, 谢峻, 傅宇芳. 在用大跨度预应力混凝土箱梁桥裂缝调查研究[J]. 公路交通科技, 2008, 25(8):52.
8 Xie J, Wang G L, Zheng X H. State of art of long-term deflection for long span prestressed concrete box-girder bridges[J]. J Highway Transportation Res Develop, 2007, 24(1):47(in Chinese).
谢峻, 王国亮, 郑晓华. 大跨径预应力混凝土箱梁桥长期下挠问题的研究现状[J]. 公路交通科技, 2007, 24(1):47.
9 Thakopoulos P A, Fisher J W. Full-scale fatigue tests of steel orthotropic decks for the Williamsburg bridge[J]. J Bridge Eng, 2003, 8(5):323.
10 Pfeil M S, Battista R C, Mergulh?o A J R. Stress concentration in steel bridge orthotropic decks[J]. J Constr Steel Res, 2005, 61(8): 1172.
11 Zhang Q H, Bu Y Z, Li Q. Review on fatigue of orthotropic steel bridge deck[J]. China J Highway Transport, 2017, 30(3):14(in Chinese).
张清华, 卜一之, 李乔. 正交异性钢桥面板疲劳问题的研究进展[J]. 中国公路学报, 2017, 30(3):14.
12 Li Z, Qian Z D. Disease analysis and classification of the representative pavements on steel deck[J]. J Transportation Eng Inform, 2006, 4(2):110(in Chinese).
李智, 钱振东. 典型钢桥面铺装结构的病害分类分析[J]. 交通运输工程与信息学报, 2006, 4(2): 110.
13 邵旭东, 胡建华. 钢-超高性能混凝土轻型组合桥梁结构[M]. 北京:人民交通出版社股份有限公司,2015:20.
14 Zhang Y L. Theoretical analysis and experimental research on behavior and crack control of negative moment zone in steel-concrete composite beams[D]. Beijing: Bejing Jiaotong University, 2009(in Chinese).
张彦玲. 钢-混凝土组合梁负弯矩区受力性能及开裂控制的试验及理论研究[D]. 北京: 北京交通大学, 2009.
15 Li H. The analysis of disease and its effect on cable stayed bridge with composite girder [D]. Harbin: Harbin Institute of Technology, 2008(in Chinese).
李辉. 钢-混凝土组合梁斜拉桥病害及其影响分析[D].哈尔滨:哈尔滨工业大学, 2008.
16 Editorial Department of China Journal of Highway and Transport. Review on China??s bridge engineering research:2014[J]. J Transportation Eng Inform, 2014, 27(5):1(in Chinese).
《中国公路学报》编辑部. 中国桥梁工程学术研究综述?2014[J]. 中国公路学报, 2014, 27(5): 1.
17 Hajar Z H, Lecointre D, Simon A, et al. Design and construction of the world first ultra-high performance concrete road bridges[C]∥ The First International Symposium on Ultra High Performance Concrete. Kassel, 2004: 39.
18 AFGC, SETRA. Ultra high performance fibre-reinforced concretes- interim recommendationsand[S]. Pairs: AFGC&SETRA Working Group, 2002.
19 Toutlemonde F, Roenelle P, Hajar Z, et al. Long-term material performance checked on worlds oldesd UHPFRC road bridges at Bourg-Ls-Valence[C]∥The Second International Symposium on Ultra-High Performance Fibre-Reinforced Concrete (UHPFRC-2013). Marseille, 2013: 265.
20 Resplendino J. State of the art of design and construction of UHPFRC structures in France[C]∥The Third International Symposium on UHPC and Nanotechnology for High Performance Construction Materials. Kassel, 2012: 27.
21 Resplendino J. Ultra-high performance concretes-recent realizations and research programs on UHPFRC bridges in France[C]∥The Second International Symposium on UHPC and Nanotechnology for High Performance Construction Materials. Kassel, 2008:31.
22 Matteis D D, Novarin M, Marchand P, et al. A fifth French bridge including UHPFRC components, the widening of the Pinel Bridge, in Rouen (France)[C]∥The Second International Symposium on UHPC and Nanotechnology for High Performance Construction Materials. Kassel, 2008:795.
23 AFGC, SETRA. Ultra high performance fibre-reinforced concretes- recommendationsand[S]. Pairs: AFGC&SETRA Working Group, 2013.
24 AFNOR. NF P 18-710 National addition to Eurocode 2-design of concrete structures: Specific rules for ultra-high performance fibre-reinforced concrete (UHPFRC)[S]. Paris, 2016.
25 Schmidt M. Sustainable building with ultra-high-performance concrete (UHPC)-coordinated research program in Germany[C]∥The Third International Symposium on UHPC and Nanotechnology for High Performance Construction Materials. Kassel, 2012: 17.
26 Fehling E, Schmidt M, Walraven J, et al. Ultra-high performance concrete UHPC: Fundamentals, design, examples[M]. Berlin: Ernst & Sohn, 2014: 134.
27 Wassmann K, Brühwiler E, Lunk P. Strengthening of RC slabs using UHPFRC-concepts and applications[C]∥4th International Symposium on Ultra-High Perfor-mance Concrete and High Performance Construction Materials. Kassel, 2016.
28 Brühwiler E. “Structural UHPFRC”: welcome to the post-concrete era![C]∥First International Interactive Symposium on UHPC. Des Moines, 2016.
29 Brühwiler E, Denarié E. Rehabilitation of concrete structures using ultra-high performance fibre reinforced concrete[C]∥The Second International Symposium on UHPC and Nanotechnology for High Performance Construction Materials. Kassel, 2008:895.
30 MCS-EPFL. SIA 2052 Recommendation: Ultra-high performance fibre reinforced cement-based composites (UHPFRC) construction material, dimensioning and application[S]. Lausanne, 2016.
31 Freytag B, Heinzle G, Reichel M, et al. WILD-bridge scientific preparation for smooth realisation[C]∥The Third International Symposium on UHPC and Nanotechnology for High Performance Construction Materials. Kassel, 2012: 881.
32 Tirimanna D L, Falbr J. FDN modular UHPFRC bridges[C]∥The Second International Symposium on Ultra-High Performance Fibre-Reinforced Concrete (UHPFRC-2013). Marseille, 2013: 395.
33 López J á, Serna P, Juan N G, et al. Construction of the U-shaped truss footbridge over the ovejas ravine in Alicante[C]∥The Second International Symposium on Ultra-High Performance Fibre-Reinforced Concrete (UHPFRC-2013). Marseille, 2013: 77.
34 López J A, Coll H, Serna P, et al. The UHPFRC pedestrian bridge above the V-21 highway in Puzol, Valencia: Design, construction and cost[C]∥4th International Symposium on Ultra-High Perfor-mance Concrete and High Performance Construction Materials. Kassel, 2016.
35 Kalny M, Kvasnicka V, Komanec J. First practical applications of UHPC in the Czech Republic[C]∥4th International Symposium on Ultra-High Performance Concrete and High Performance Construction Materials. Kassel, 2016.
36 Coufal R, Vitek J L, Kalny M. The first large application of UHPC in the Czech Republic[C]∥First International interactive Sympo-sium on UHPC. Des Moines, 2016.
37 Russell H G, Graybeal B A. Ultra-high performance concrete: A state-of-the-art report for the bridge community[R]. FHWA-HRT-13-060, 2013.
38 Graybeal B. Design and construction of field-cast UHPC connections[R]. FHWA-HRT-14-084, 2014.
39 Perry V H, Seibert P J. Fifteen years of UHPC construction ex-perience in precast bridges in North America[C]∥The Second International Symposium on Ultra-High Performance Fibre-Reinforced Concrete (UHPFRC-2013). Marseille, 2013: 229.
40 Aaleti S, Petersen B, Sritharan S. Design guide for precast UHPC waffle deck panel system, including connections[R]. FHWA-HIF-13-032, 2013.
41 Toutlemonde F, Resplendino J. Designing and building with UHPFRC: State of the art and development[M]. London and Hoboken: ISTE Ltd and John Wiley & Sons, Inc., 2011.
42 Kim B S, Joh C, Park S Y, et al. KICT??s application of UHPC to the first UHPC cable stayed roadway bridge[C]∥First International Interactive Symposium on UHPC. Des Moines, 2016.
43 Kim B S, Kim S, Kim Y J, et al. R&D activities and application of ultra high performance concrete to cable stayed bridges[C]∥The Third International Symposium on UHPC and Nanotechnology for High Performance Construction Materials. Kassel, 2012: 865.
44 KICT. Design Guidelines for K-UHPC[S]. Korea:KICT, 2014.
45 Voo Y L, Foster S, Pek L G. Ultra-high performance concrete-technology for present and future[C]∥Fib Symposium 2017. Maastricht, 2017.
46 BD37/01.”Loads for highway bridges”, design manual for road and bridge[S]. London, 2001.
47 Rebentrost M, Wight G. Experience and applications of ultra-high performance concrete in Asia[C]∥The Second International Symposium on UHPC and Nanotechnology for High Performance Construction Materials. Kassel, 2008:19.
48 黄政宇, 沈蒲生. 200MPa超高强钢纤维混凝土试验研究[J]. 混凝土, 1993(3): 3.
49 Qin W Z, Cao F. A new ultra-high performance concrete—Reactive powder concrete[J]. Ind Constr, 1999, 29(4):16 (in Chinese).
覃维祖, 曹峰. 一种超高性能混凝土——活性粉末混凝土[J]. 工业建筑, 1999, 29(4): 16.
50 Chen B C, Ji T, Huang Q W, et al. Review of research on ultra-high performance concrete[J]. J Architecture Civil Eng, 2014, 31(3): 1(in Chinese).
陈宝春, 季韬, 黄卿维, 等. 超高性能混凝土研究综述[J]. 建筑科学与工程学报, 2014, 31(3): 1.
51 Wang D H, Shi C J, Wu L M. Research and application of ultra-high performance concrete (UHPC)in China[J]. Bull Chin Ceram Soc, 2016, 35(1): 141(in Chinese).
王德辉, 史才军, 吴林妹. 超高性能混凝土在中国的研究和应用[J]. 硅酸盐通报, 2016, 35(1): 141.
52 Zheng W Z, Lv X Y. Literature review of reactive powder concrete[J]. J Building Struct, 2015,36(10): 44(in Chinese).
郑文忠, 吕雪源. 活性粉末混凝土研究进展[J]. 建筑结构学报, 2015, 36(10): 44.
53 中华人民共和国住房和城乡建设部. GB/T 31387-2015 活性粉末混凝土[S]. 北京: 中国标准出版社, 2015.
54 檀军锋. 活性粉末混凝土(RPC)在铁路预制梁工程中的应用[J]. 上海铁道科技, 2007(2): 54.
55 李晨光, 安明喆, 都清. 超高性能结构混凝土材料工程化应用基础研究[J]. 混凝土世界, 2010(3): 28.
56 陈宝春, 黄卿维, 傅元方, 等. 4~30 m超高性能混凝土箱梁桥的设计与施工[C]∥第九届全国高强与高性能混凝土学术交流会. 福州, 2014:313.
57 陈宝春, 黄卿维, 王远洋, 等. 中国第一座超高性能混凝土(UHPC)拱桥的设计与施工[J]. 中外公路, 2016(1): 67.
58 Zheng H, Su J, Fang Z. The first precast segmental box-girder road bridge in China[C] ∥ 1st International Conference on UHPC Materials and Structures.Changsha, 2016: 619.
59 Shao X D, Cao J H, Yi D T, et al. Research on basic performance of composite bridge deck system with orthotropic steel deck and thin RPC layer[J]. China J Highway Transport, 2012, 25(2): 40(in Chinese).
邵旭东, 曹君辉, 易笃韬, 等. 正交异性钢板-薄层RPC组合桥面基本性能研究[J]. 中国公路学报, 2012, 25(2): 40.
60 Shao X D, Zhan H, Lei W, et al. Conceptual design and preliminary experiment of super-long-span continuous box-girder bridge composed of one-way prestressed UHPC[J]. China Civil Eng J, 2013,46(8): 83(in Chinese).
邵旭东, 詹豪, 雷薇, 等. 超大跨径单向预应力UHPC连续箱梁桥概念设计与初步实验[J]. 土木工程学报, 2013, 46(8): 83.
61 Shao X D, Wu J J, Liu R, et al. Basic performance of waffle deck panel of lightweight steel-UHPC composite bridge[J]. China J Highway Transport, 2017, 30(3): 218(in Chinese).
邵旭东, 吴佳佳, 刘榕, 等. 钢-UHPC轻型组合桥梁结构华夫桥面板的基本性能[J]. 中国公路学报, 2017, 30(3): 218.
62 Deng S W, Shao X D, Yan B F, et al. Lightweight steel-UHPC composite bridge with overall prefabrication and fast erection in city[J]. China J Highway Transport, 2017, 30(3): 159(in Chinese).
邓舒文, 邵旭东, 晏班夫, 等. 全预制快速架设钢-UHPC轻型组合城市桥梁[J]. 中国公路学报, 2017, 30(3): 159.
63 Guan Y P. Design and preliminary experiments of UHPC π-shaped girder bridge[D]. Changsha: Hunan University, 2016(in Chinese).
管亚萍. 预制超高性能混凝土π形梁桥的设计与初步试验[D]. 长沙: 湖南大学, 2016.
64 Wei Y X, Fang Z. Behaviors of precast fabricated box girder bridge using reactive power concrete[J]. Highway Eng, 2016, 41(5):11 (in Chinese).
魏亚雄, 方志. 预制装配式活性粉末混凝土箱梁桥的结构性能[J]. 公路工程, 2016, 41(5):11.
65 Lu Z L, Fang Z. Performance research on hybrid girder bridge of RPC and normal concrete[J]. Highway Eng, 2016, 41(5):22 (in Chinese).
卢祖梁, 方志. 活性粉末混凝土混合梁桥性能研究[J]. 公路工程, 2016, 41(5): 22.
66 Chen B C, ?avor Z, Su J Z, et al. A state-of-the-art of ultra-high performance concrete arch bridges[C] ∥ 1st International Confe-rence on UHPC Materials and Structures.Changsha, 2016: 614.
[1] 刘晓楠, 张春晓, 王世合, 张高展, 毛继泽, 曹少华, 刘国强. 养护制度对添加纳米SiO2超高性能混凝土动静态力学性能的影响[J]. 材料导报, 2025, 39(2): 23070188-7.
[2] 苏悦, 闫楠, 白晓宇, 付林, 张启军, 梁斌, 王保栋, 王立彬, 张英杰, 张安琪. 预拌流态固化土的工程特性研究进展及应用[J]. 材料导报, 2024, 38(9): 23070212-7.
[3] 成鑫磊, 穆锐, 孙涛, 刘元雪, 胡志德, 蒋昊洋. 固液相变材料的封装制备及在建筑领域的研究进展[J]. 材料导报, 2024, 38(5): 23080048-15.
[4] 刘佳杰, 后振中, 杨庆浩, 赵秋丽. 加成型液体硅橡胶的研究及应用进展[J]. 材料导报, 2024, 38(20): 23050199-7.
[5] 陶宏伟, 禹庭, 曹明轩, 吴仲恒, 蔡召兵, 刘敏, 闫星辰. 激光选区熔化CoCrMo合金的组织研究及生物应用[J]. 材料导报, 2024, 38(17): 23030026-6.
[6] 陈聪聪, 吴泽媚, 胡翔, 史才军. 钢纤维形状和养护制度对超高性能混凝土强度及韧性的影响[J]. 材料导报, 2024, 38(15): 23030088-11.
[7] 马昆林, 孟维琦, 申景涛, 胡明文, 王晓杰, 龙广成, 曾晓辉. 再生微粉性能激活研究及应用进展[J]. 材料导报, 2024, 38(10): 22100042-13.
[8] 曹哲勇, 刘兴华, 郑静霞, 杨永珍, 刘旭光. 非线性光学碳点的调控及应用研究进展[J]. 材料导报, 2023, 37(7): 21060197-10.
[9] 孙宗旭, 张焕芝, 荆锐, 吴博竞, 徐芬, 夏永鹏, 孙立贤. 相变复合纳米纤维的研究与应用[J]. 材料导报, 2023, 37(7): 21060061-8.
[10] 金胜利, 寿春晖, 黄绵吉, 贺海晏, 李聪. 钙钛矿太阳能电池稳定性研究进展及模组产业化趋势[J]. 材料导报, 2023, 37(5): 21030201-13.
[11] 张弛, 党乾, 刘国怀, 王昭东. 稀土钇的开发及应用[J]. 材料导报, 2023, 37(3): 22120049-8.
[12] 王兰喜, 何延春, 王虎, 吴春华, 李林. 石墨烯导热纸研究进展[J]. 材料导报, 2023, 37(3): 20110183-9.
[13] 纪澄, 王璟, 孙骏宇, 安一卓. 微纳多孔聚合物基辐射冷却材料的制备、性能调控及应用[J]. 材料导报, 2023, 37(24): 22060240-14.
[14] 游子娟, 陈汉林. 高熵氧化物合成及催化应用的研究进展[J]. 材料导报, 2023, 37(24): 22090127-11.
[15] 边晨, 郭君渊, 肖建庄, 赵长军. 纳米偏高岭土及细骨料对UHPC力学性能的影响[J]. 材料导报, 2023, 37(23): 22070261-5.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed