Please wait a minute...
材料导报  2025, Vol. 39 Issue (17): 24080218-9    https://doi.org/10.11896/cldb.24080218
  高分子与聚合物基复合材料 |
木质素及其复合抗紫外屏蔽材料的研究进展
黄思淼1, 李晓玉1, 吴新宇1, 连海兰1,2,*
1 南京林业大学材料科学与工程学院,南京 210037
2 南京林业大学林业资源高效加工利用协同创新中心,南京 210037
Research Progress on UV Resistance of Lignin and Its Composite Materials
HUANG Simiao1, LI Xiaoyu1, WU Xinyu1, LIAN Hailan1,2,*
1 College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
2 Jiangsu Co-Innovation Centre of Efficient Processing and Utilization of Forest Products, Nanjing Forestry University, Nanjing 210037, China
下载:  全 文 ( PDF ) ( 32359KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 木质素因富含酚羟基和酮基等结构,具备天然的广谱紫外防护能力和抗氧化特性,近年来在紫外屏蔽材料中的应用研究受到关注。本文从紫外线的产生、基本特征和吸收原理出发,简单介绍了木质素的结构、紫外吸收机制,综述了木质素在防晒霜、生物可降解紫外屏蔽膜及光管理材料中的应用进展。针对未经处理的木质素的紫外线屏蔽性能较低,且存在形态不规则、分散性差、粒径大和异质性等缺陷,仍不能满足大多数应用需求的问题,概括了木质素与其他紫外屏蔽剂、紫外吸收剂、光稳定剂等多种材料复合后的木质素基复合抗紫外屏蔽材料的研究现状,提出了未来的发展方向,以期为木质素基复合材料抗紫外性能的研究提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
黄思淼
李晓玉
吴新宇
连海兰
关键词:  木质素  紫外屏蔽  木质素复合材料  抗氧化性    
Abstract: Lignin, due to its abundance of phenolic hydroxyl and carbonyl groups, possesses natural broad-spectrum UV protection and antioxidant pro-perties. In recent years, research on its application in UV-shielding materials has garnered attention. This paper begins by introducing the generation, basic characteristics, and absorption mechanisms of ultraviolet radiation, followed by a brief overview of lignin's structure and its UV absorption mechanism. It then reviews the progress of lignin applications in sunscreen formulations, biodegradable UV-shielding films, and light management materials. Given that untreated lignin exhibits relatively low UV shielding performance and suffers from issues such as irregular morphology, poor dispersibility, large particle size, and heterogeneity, which limit its applicability, the current research status of lignin-based compo-site UV-shielding materials, where lignin is combined with other UV blockers, UV absorbers, and light stabilizers, is summarized. Lastly, future development directions are proposed, offering a reference for further research into enhancing the UV protection performance of lignin-based composite materials.
Key words:  lignin    UV shielding    lignin composites    oxidation resistance
发布日期:  2025-08-28
ZTFLH:  TQ423  
基金资助: 国家自然科学基金(32071703)
通讯作者:  *连海兰,南京林业大学材料科学与工程学院教授、博士研究生导师。主要从事环保型木材胶黏剂与涂料、木质素等生物质纳米复合材料的绿色制备及功能性应用等方面的教学与科研工作。lianhailan@njfu.edu.cn   
作者简介:  黄思淼,南京林业大学材料科学与工程学院硕士研究生,在连海兰教授的指导下进行研究。目前主要研究方向为木质素复合材料的绿色制备、环保型木材胶粘剂的合成。
引用本文:    
黄思淼, 李晓玉, 吴新宇, 连海兰. 木质素及其复合抗紫外屏蔽材料的研究进展[J]. 材料导报, 2025, 39(17): 24080218-9.
HUANG Simiao, LI Xiaoyu, WU Xinyu, LIAN Hailan. Research Progress on UV Resistance of Lignin and Its Composite Materials. Materials Reports, 2025, 39(17): 24080218-9.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24080218  或          https://www.mater-rep.com/CN/Y2025/V39/I17/24080218
1 El-Hiti G A, Ahmed D S, Yousif E, et al. Polymers, 2021, 14, 20.
2 Lu T, Solis-Ramos E, Yi Y, et al. Polymer Degradation and Stability, 2018, 154, 203.
3 Nazari M H, Zhang Y, Mahmoodi A, et al. Progress in Organic Coa-tings, 2022, 162, 106573.
4 Tor-Świątek A, Garbacz Ł. Advances in Science and Technology. Research Journal, 2022, 16(3), 282.
5 Kaur R, Thakur N S, Chandna S, et al. Journal of Materials Chemistry B, 2020, 8(2), 260.
6 Xing Q, Buono P, Ruch D, et al. ACS Sustainable Chemistry & Engineering, 2019, 7(4), 4147.
7 Baker L A, Marchetti B, Karsili T N V, et al. Chemical Society Reviews, 2017, 46(12), 3770.
8 Andrady A L, Heikkilä A M, Pandey K K, et al. Photochemical & Photobiological Sciences, 2023, 22(5), 1177.
9 Yu J C, Yu J G, Ho W K, et al. Chemistry of Materials, 2002, 14, 3808.
10 Yin H, Casey P S. Materials Letters, 2014, 121, 8.
11 Agustiany E A, Rasyidur M, Rahmi D N M, et al. Polymer Composites, 2022, 43(8), 4848.
12 Barsberg S, Elder T, Felby C. Chemistry of Materials, 2003, 15, 649.
13 Lanzalunga O, Bietti M. Journal of Photochemistry and Photobiology B:Biology, 2000, 56(2-3), 85.
14 Singer S, Schwarz T, Berneburg M, et al. Grundlagen zur phototherapie, Springer Fachmedien Wiesbaden, DE, 2016, pp. 1.
15 Zhabotinsky A M, Eager M D, Epstein I R. Physical Review Letters, 1993, 71(10), 1526.
16 Bohren C F, Huffman D R. Absorption and Scattering of Light by Small Particles, 2007, 2, 57.
17 Nowicki M, Richter A, Wolf B, et al. Polymer, 2003, 44(21), 6599.
18 Colli L. Physical Review, 1954, 95(4), 892.
19 Yu H, Xu L, Yang F, et al. Bulletin of Environmental Contamination and Toxicology, 2021, 107(2), 221.
20 Sheng Y, Lam S S, Wu Y, et al. Bioresource Technology, 2021, 324, 124631.
21 Zhao Z M, Liu Z H, Pu Y Q, et al. Chemsuschem, 2020, 13(20), 5423.
22 Zakzeski J, Bruijnincx P C A, Jongerius A L, et al. Chemical Reviews, 2010, 110(6), 3552.
23 Chen J C, Liu W X, Yang G H, et al. Chemistry of papermaking plant resources, Science Press, China, 2012, pp. 205 (in Chinese).
陈嘉川, 刘温霞, 杨桂花, 等. 造纸植物资源化学, 科学出版社, 2012, pp. 205.
24 Ou J F, Chen Z D, Zhang H, et al. Transactions of China Pulp and Paper, 2024, 39(2), 61(in Chinese).
欧金芬, 陈振东, 张涵, 等. 中国造纸学报, 2024, 39(2), 61.
25 Gillet S, Aguedo M, Petitjean L, et al. Green Chemistry, 2017, 19(18), 4200.
26 You T, Xu F. Spectroscopy to Current Research in the Chemical and Biological Sciences, 2016, 2016, 235.
27 Lee S C, Tran T M T, Choi J W, et al. International Journal of Biological Macromolecules, 2019, 122, 549.
28 Paulsson M, Parkås J. Bioresources, 2012, 7(4), 5995.
29 Guo Y, Tian D, Shen F, et al. Polymers, 2019, 11(9), 1455.
30 Lim J, Sana B, Krishnan R, et al. Chemistry—An Asian Journal, 2018, 13(3), 284.
31 Li Y, Zhao S, Hu D, et al. ACS Sustainable Chemistry & Engineering, 2022, 10(36), 11856.
32 Antunes F, Mota I F, Fangueiro J F, et al. International Journal of Biological Macromolecules, 2023, 234, 123592.
33 Li Z, Chen L, Qiu X. Industrial Crops and Products, 2024, 208, 117857.
34 Li X, Liu Y, Ren X. International Journal of Biological Macromolecules, 2022, 216, 86.
35 Ban W, Song J, Lucia L A. Industrial & Engineering Chemistry Research, 2007, 46(20), 6480.
36 Mehta M J, Kumar A. Chemistry—A European Journal, 2019, 25(5), 1269.
37 Xiong F, Wu Y, Li G, et al. Industrial & Engineering Chemistry Research, 2018, 57(4), 1207.
38 Hong S, Park J H, Kim O Y, et al. Polymers, 2021, 13, 667.
39 Long H, Hu L, Yang F, et al. Composites Part B: Engineering, 2022, 239, 109968.
40 Shojaeiarani J, Bajwa D S, Ryan C, et al. Industrial Crops and Products, 2022, 183, 114904.
41 Yang W, Zhu Y, He Y, et al. Industrial Crops and Products, 2022, 183, 114965.
42 Zhang Y, Zhou S, Fang X, et al. European Polymer Journal, 2019, 116, 265.
43 Li S, Cui B, Xie H, et al. ACS Applied Materials & Interfaces, 2022, 14(37), 42522.
44 Liu D, Li Y, Qian Y, et al. ACS Sustainable Chemistry & Engineering, 2017, 5(9), 8424.
45 Agumba D O, Kumar B, Panicker P S, et al. Optical Materials, 2022, 133, 112898.
46 Alhaffar M T, Akhtar M N, Ali S A. RSC Advances, 2019, 9, 21265.
47 Li Y Y, Wang Y, Xu J L, et al. Journal of Advances in Physical Chemistry, 2022, 11(3), 79(in Chinese).
李洋洋, 王岩, 许静蕾, 等. 物理化学进展, 2022, 11(3), 79
48 Yu J, Li L, Qian Y, et al. Industrial & Engineering Chemistry Research, 2018, 57(46), 15740.
49 Morsella M, D'alessandro N, Lanterna A E, et al. ACS Omega, 2016, 1(3), 464.
50 Li Y, Yang D, Lu S, et al. ACS Sustainable Chemistry & Engineering, 2019, 7(6), 6234.
51 Li L S, Wang T. Electronic Components and Materials, 2021, 40(4), 328(in Chinese).
李林森, 汪涛. 电子元件与材料, 2021, 40(4), 328.
52 Hong C H, Yang L, Zhu W C. Guangdong Chemical Industry, 2024, 51(14), 62(in Chinese).
洪春水, 杨雷, 祝文才. 广东化工, 2024, 51(14), 62.
53 Gutiérrez-Hernández J M, Escalante A, Murillo-Vázquez R N, et al. Journal of Photochemistry and Photobiology B:Biology, 2016, 163, 156.
54 Wang H, Qiu X, Liu W, et al. Industrial & Engineering Chemistry Research, 2017, 56(39), 11133.
55 Wang H, Lin W, Qiu X, et al. ACS Sustainable Chemistry & Engineering, 2018, 6(3), 3696.
56 Li X, Xiao J, Wei W, et al. International Journal of Biological Macromolecules, 2023, 225, 1405.
57 Song Y, Wu X, Ma C, et al. Journal of Liaoning Petrochemical University, 2024, 44(3), 10(in Chinese).
宋悦, 吴限, 马诚, 等. 辽宁石油化工大学学报, 2024, 44(3), 10.
58 Marković D, Petkovska J, Mladenovic N, et al. Journal of Applied Polymer Science, 2023, 140(19), e53823.
59 Shankar S, Rhim J W. Food Hydrocolloids, 2017, 71, 76.
60 Shankar S, Rhim J W, Won K. International Journal of Biological Macromolecules, 2018, 107, 1724.
61 Qian Y, Qiu X, Zhu S. ACS Sustainable Chemistry & Engineering, 2016, 4(7), 4029.
62 Chen H. Lignocellulose Biorefinery Engineering, 2015, 1, 37.
63 Qiu X, Li Y, Qian Y, et al. ACS Applied Bio Materials, 2018, 1, 1276.
64 Bortolus P, Dellonte S, Faucitano A, et al. Macromolecules, 1986, 19(12), 2916.
65 Nikafshar S, McCracken J, Dunne K, et al. Progress in Organic Coa-tings, 2021, 151, 105843.
66 Kocaefe D, Saha S. Applied Surface Science, 2012, 258(13), 5283.
67 Ohkatsu Y. Journal of the Japan Petroleum Institute, 2008, 51, 191.
[1] 武金帆, 徐芬, 孙立贤, 廖鹿敏, 管彦洵. 具有抗氧化性的Al-Bi(C2H5OH)3-C多孔块体制氢材料[J]. 材料导报, 2025, 39(8): 24030133-6.
[2] 张业飞, 江海涛, 田世伟, 张思远, 李冲. TiAl基合金高温防护及热障涂层体系研究进展[J]. 材料导报, 2025, 39(4): 24020147-10.
[3] 沈彬, 顾尚军, 王劼, 魏福龙, 谢祥, 黎志英, 张钧祥, 李长荣. V含量对S30403奥氏体不锈钢高温抗氧化性能的影响[J]. 材料导报, 2025, 39(17): 24040050-9.
[4] 唐瑞欣, 朱子琪, 王玲, 杨培, 周晓燕. 光催化解聚木质素及其模型化合物的研究进展[J]. 材料导报, 2025, 39(16): 24080059-11.
[5] 李成晗, 朱旭东, 李依萍, 燕红. 利用木质素碳量子点提升UIO-66-NH2材料光催化水解产氢效率研究[J]. 材料导报, 2025, 39(15): 24060189-8.
[6] 陈晓平, 陶贤成, 鲍听, 赵宁宁, 楼玉民, 岳建岭. GH 783合金和NiCoCrAlYTa涂层的抗氧化性能研究[J]. 材料导报, 2025, 39(14): 24060116-7.
[7] 谢雨兮, 吴双双, 方晓阳, 徐伟. 天然高分子络合无机纳米复合抗菌剂研究进展[J]. 材料导报, 2025, 39(13): 24040133-11.
[8] 王玉瑞, 孙洪飞, 孙顺平, 王洪金, 赵凤玲, 张扬, 李小平. Nb、W合金化对电弧熔覆MoSi2涂层高温抗氧化性的影响[J]. 材料导报, 2025, 39(10): 24040229-7.
[9] 张晓君, 武佳龙, 乔楠, 于大禹, 孙墨杰, 陈景. 氮掺杂木质素基碳量子点在次氯酸根离子检测中的应用[J]. 材料导报, 2024, 38(24): 23050197-5.
[10] 姜波, 焦欢, 郭新宇, 金永灿. 木质素熔融沉积式3D打印的分子结构-流变学响应关系研究进展[J]. 材料导报, 2024, 38(11): 22100182-8.
[11] 方亚超, 潘明熙, 黄惠, 何亚鹏, 张盼盼, 杨聪庆, 郭忠诚, 陈步明. 电子级超细树枝状铜粉的抗氧化性研究[J]. 材料导报, 2023, 37(7): 21090292-7.
[12] 张曦挚, 崔红, 胡杨, 邓红兵. 利用等离子喷涂制备C/C复合材料表面耐烧蚀抗氧化涂层的研究进展[J]. 材料导报, 2023, 37(6): 21050162-7.
[13] 杜鹏, 刘洁, 张静, 马婕妤, 耿艳艳, 曹丰. 木质素碳点的优化合成及用于金属离子的检测[J]. 材料导报, 2023, 37(5): 21080027-6.
[14] 赵帆, 周文健, 张志豪. 稀土镧对H13模具钢回火稳定性和抗氧化性的影响[J]. 材料导报, 2023, 37(2): 22070125-6.
[15] 王伟, 郭鸽鸽, 丁士杰, 程鹏, 高原, 王快社. 钛合金表面抗氧化玻璃涂层研究进展[J]. 材料导报, 2022, 36(Z1): 21110265-8.
[1] Guang MA,Xin CHEN,Licheng LU,Dongqun XIN,Li MENG,Hao WANG,Ling CHENG,Fuyao YANG. Monte Carlo Simulation of the Evolution of Goss Texture in Secondary Recrystallization of Thin Gauge Grain Oriented Silicon Steel[J]. Materials Reports, 2018, 32(2): 313 -315 .
[2] CHEN Jian, XU Hui. Research Progress of Graphene and Its Nanocomposites as Anodes for Lithium Ion Batteries[J]. Materials Reports, 2017, 31(9): 36 -44 .
[3] WANG Tiantian, XU Mengjia, XU Jijin, YU Chun, LU Hao. Influence of Second Welding Thermal Cycle on Reheat Cracking Sensitivity of CGHAZ in T23 Steel[J]. Materials Reports, 2017, 31(12): 56 -59 .
[4] XIE Jiale, YANG Pingping, LI Chang Ming. Stable and High-efficient α-Fe2O3 Based Photoelectrochemical Water Splitting: Rational Materials Design and Charge Carrier Dynamics[J]. Materials Reports, 2018, 32(7): 1037 -1056 .
[5] YANG Shicong, YAO Guowen, ZHANG Jinquan, SHI Kang. The Corrosion Fatigue Characteristic of Steel Strand Experiencing an Artificial Accelerated Salt Fog Ageing[J]. Materials Reports, 2018, 32(12): 1988 -1993 .
[6] HU Yaoqiang, CHEN Fajin, LIU Haining, ZHANG Huifang, WU Zhijian, YE Xiushen. Preparation of Poly(N-isopropylacrylamide) Hydrogel and Its Thermally Induced Aggregation Behavior[J]. Materials Reports, 2018, 32(14): 2491 -2496 .
[7] LI Xiuli, TIE Shengnian. Effect of Quick-dissolving and High-viscosity Carboxymethyl Cellulose Sodium on Properties of Glauber’s Salt-based Composites Phase Change Energy Storage Materials with Different Phase Transition Temperature Gradient[J]. Materials Reports, 2018, 32(22): 3848 -3852 .
[8] CHANG Jingjing. Spin Coating Epitaxial Films[J]. Materials Reports, 2019, 33(12): 1919 -1920 .
[9] REN Xiuxiu, ZHU Yiju, ZHAO Shengxiang, HAN Zhongxi, YAO Lina. The Relationship Between Micromechanical Property and Friction Property of Four Kinds of Energetic Crystals[J]. Materials Reports, 2019, 33(z1): 448 -452 .
[10] ZHUANG Xiaodong, LI Rongxing, YU Xiaohua, XIE Gang, HE Xiaocai, XU Qingxin. Preparation of Lithium Titanate Electrode Materials by Solid Phase Method[J]. Materials Reports, 2019, 33(16): 2654 -2659 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed