Please wait a minute...
材料导报  2025, Vol. 39 Issue (16): 24080210-6    https://doi.org/10.11896/cldb.24080210
  无机非金属及其复合材料 |
高分辨X射线光电子能谱研究GexGa8Se92-x玻璃的结构
许思维1,*, 王荣平2, 王训四2
1 湖南文理学院数理学院,湖南省光电信息集成与光学制造技术重点实验室,湖南 常德 415000
2 宁波大学高等技术研究院,浙江省光电探测材料及器件重点实验室,浙江 宁波 315211
Structure of GexGa8Se92-x Glasses Studied by High-resolution X-ray Photoelectron Spectroscopy
XU Siwei1,*, WANG Rongping2, WANG Xunsi2
1 Hunan Key Laboratory of Photoelectric Information Integration and Optical Manufacturing Technology, College of Mathematics and Physics, Hunan University of Arts and Science, Changde 415000, Hunan, China
2 Zhejiang Key Laboratory of Photoelectric Materials and Devices, The Research Institute of Advanced Technologies, Ningbo University, Ningbo 315211,Zhejiang, China
下载:  全 文 ( PDF ) ( 7159KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 硫系玻璃Ge-Ga-Se凭借其显著的特性成为制造光纤激光器、光放大器和平面波导等有源光子器件的重要基质材料。因此,系统地了解Ge-Ga-Se玻璃的结构对于设计出最优化的光学玻璃至关重要。然而无论是拉曼散射、红外光谱,还是核磁共振等测试技术,对Ge-Ga-Se玻璃结构的研究所提供的信息均在不同程度上存在不足。因此,本研究利用高分辨率X射线光电子能谱技术对一组从富Se到贫Se的硫系玻璃GexGa8Se92-x(x=16%、20%、24%、26.67%、29.6%、32%和36%)结构的演化进行了研究,发现在Ge-Ga-Se玻璃中Ge、Ga和Se原子的配位数主要表现为4、4和2,并且Ga原子优先于Ge原子与玻璃中的Se原子结合形成四配位结构。GexGa8Se92-x玻璃从富Se状态转变为贫Se状态的过程中,Se-Se-Se和Se-Se-Ge/Ga结构单元逐渐减少,相继消失于Ge26.67Ga8Se65.33和Ge32Ga8Se60玻璃结构中。GeSe4和GaSe4四面体结构单元也不断演变为缺陷状态,甚至出现Ge或Ga原子高度聚集的情况。由此表明,相对于贫Se状态下的Ge-Ga-Se玻璃而言,Ga原子在富Se的Ge-Ga-Se玻璃结构中分布更加均匀,因此,其更适合作为稀土离子掺杂的理想宿主。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
许思维
王荣平
王训四
关键词:  硫系玻璃  结构  X射线光电子能谱(XPS)  红外  掺杂  稀土离子    
Abstract: Chalcogenide glass Ge-Ga-Se has become an important matrix material for active photonic devices such as fiber lasers, optical amplifiers and planar waveguides due to its remarkable properties. Therefore, understanding the structure of Ge-Ga-Se glass in the systematic way is essential for the design of optimal optical glasses. However, the information provided by Raman scattering, infrared spectroscopy, and nuclear magnetic resonance for the study of Ge-Ga-Se glasses structure is incomplete to varying degrees. Therefore, in the work, we prepared a group of GexGa8Se92-x chalcogenide glasses (x=16%, 20%, 24%, 26.67%, 29.6%, 32% and 36%), and measured their structural by high-resolution X-ray photoelectron spectroscopy, in order to understand the evolution of the glass structure with chemical composition. From the Ge, Ga and Se 3d XPS spectra, it can be found that Ge and Ga atoms mainly exhibit 4-fold coordination in Ge-Ga-Se glass, and Ga atoms preferentially form a 4-fold coordination structure before Ge atoms. However, the Se atoms of GexGa8Se92-x glass are 2-fold coordinated regardless of whether the glass is Se-rich or Se-poor. As the Ge-Ga-Se chalcogenide glass composition changes from Se-rich to Se-poor, it can be found that the integrated area of Se-Se-Se and Se-Se-Ge/Ga doublet decreases with increasing Ge concentration, and is completely suppressed in the Ge26.67Ga8Se65.33 and Ge32Ga8Se60 glasses. The GeSe4 and GaSe4 tetrahedral structural units in Se-rich chalcogenide glasses were gradually destroyed and evolved into defect states, especially in the glasses containing high concentrations of Ge or Ga atoms. It is shown that the Ga atoms are more evenly distributed in the Se-rich compared with those in the Se-poor Ge-Ga-Se glass, so it is more suitable as hosts for the doping of rare earth ions.
Key words:  chalcogenide glasses    structure    X-ray photoelectron spectroscopy (XPS)    infrared    doping    rare-earth ions
出版日期:  2025-08-15      发布日期:  2025-08-15
ZTFLH:  TQ171.1  
基金资助: 国家自然科学基金(62004067);湖南省自然科学基金(2023JJ30438);湖南省教育厅科学研究重点项目(24A0487)
通讯作者:  许思维,湖南文理学院副教授。目前主要从事中红外光学材料的结构及性能等方面的研究。xusiwei1227@163.com   
引用本文:    
许思维, 王荣平, 王训四. 高分辨X射线光电子能谱研究GexGa8Se92-x玻璃的结构[J]. 材料导报, 2025, 39(16): 24080210-6.
XU Siwei, WANG Rongping, WANG Xunsi. Structure of GexGa8Se92-x Glasses Studied by High-resolution X-ray Photoelectron Spectroscopy. Materials Reports, 2025, 39(16): 24080210-6.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24080210  或          https://www.mater-rep.com/CN/Y2025/V39/I16/24080210
1 Wang R P. Amorphous chalcogenides:advances and applications, Pan Stanford Publisher, Singapore, 2014, pp. 178.
2 Tanaka K, Shimakawa K. Amorphous chalcogenide semiconductors and related materials, Springer International Publishing, USA, 2011, pp. 115.
3 Scheffler M, Kirchhof J, Kobelke J, et al. Journal of Non-Crystalline Solids, 1999, 256&257, 59.
4 Qian L, Wang R P, Wang W. Journal of Non-Crystalline Solids, 2024, 643, 123177.
5 Choi Y G, Kim K H, Lee B J, et al. Journal of Non-Crystalline. Solids, 2000, 278, 137.
6 Wang W, Wei T X, Zhang Z, et al. Optics Letters, 2023, 48, 5715.
7 Gu S X, Zhao X J. Materials Reports, 2007, 21(7), 130 (in Chinese).
顾少轩, 赵修建. 材料导报, 2007, 21(7), 130.
8 Xu S W, Yang X N, Yang J H, et al. Chalcogenide Letters, 2021, 18(6), 277.
9 Kostka P, Zavadil J, Iovu M S, et al. Journal of Alloys and Compounds, 2015, 648, 237.
10 Sukhanov M V, Velmuzhov A P, Stepanov B S, et al. Journal of Non-Crystalline. Solids, 2022, 590, 121700.
11 Shiryaev V S, Filatov A I, Karaksina E V, et al. Journal of Non-Crystalline Solids, 2021, 303, 122454.
12 Adam J-L, Zhang X. Chalcogenide glasses:preparation, properties and applications, Woodhead Publishing, UK, 2014, pp. 347.
13 Wang D Q, Chen W, Cheng J J. Materials Reports, 2000, 14(1), 40 (in Chinese).
王德强, 陈玮, 程继健. 材料导报, 2000, 14(1), 40.
14 Xu Y T, Guo H T, Lu M, et al. Materials Reports, 2010, 24(10), 49 (in Chinese).
许彦涛, 郭海涛, 陆敏, 等. 材料导报, 2010, 24(10), 49.
15 Mori A, Ohishi Y, Kanamori T, et al. Applied Physics Letters, 1997, 70, 1230.
16 Mao A W, Aitken B G, Youngman R E, et al. The Journal of Physical Chemistry B, 2013, 117, 16594.
17 Golovchak R, Calvez L, Petracovschi E, et al. Materials Chemistry and Physics, 2013, 138, 909.
18 Petracovschi E, Bureau B, Moreac A, et al. Journal of Non-Crystalline Solids, 2016, 421, 16.
19 Zhang Z, Sun Y H, Yang Z, et al. Chalcogenide Letters, 2023, 20(7), 507.
20 Pethes I, Chahal R, Nazabal V, et al. Journal of Alloys and Compounds, 2015, 651, 578.
21 Petit L, Carlie N, Adamietz F, et al. Materials Chemistry and Physics, 2006, 97, 64.
22 Wang R P, Smith A, Prasad A, et al. Journal of Applied Physics, 2009, 106, 043520.
23 Eckert H, Yesinowski J P. Journal of the American Chemical Society, 1986, 108, 2140.
24 Bureau B, Troles J, Floch M L, et al. Journal of Non-Crystalline Solids, 2003, 319, 145.
25 Golovchak R, Kovalskiy A, Miller A C, et al. Physical Review B, 2007, 76, 125208.
26 Golovchak R, Shpotyuk O, Kozyukhin S, et al. Journal of Applied Physics, 2009, 105, 103704.
27 Golovchak R, Shpotyuk O, Mccloy J S, et al. Philosophical Magazine, 2010, 90, 4489.
28 Xu S W, Wang R P, Luther-Davies B, et al. Journal of Applied Physics, 2014, 115, 083518.
29 Xu S W, Wang X S, Shen X. Acta Physica Sinica, 2023, 72(1), 017101 (in Chinese).
许思维, 王训四, 沈祥. 物理学报, 2023, 72(1), 017101.
30 Xu S W, Yang X N, Yang D X, et al. Acta Physica Sinica, 2021, 70(16), 167101 (in Chinese).
许思维, 杨晓宁, 杨大鑫, 等. 物理学报, 2021, 70(16), 167101.
31 Xu S W, Wang L, Shen X. Acta Physica Sinica, 2015, 64(22), 223302 (in Chinese).
许思维, 王丽, 沈祥. 物理学报, 2015, 64(22), 223302.
32 Golovchak R, Shpotyuk O, Kozyukhin S, et al. Journal of Non-Crystalline Solids, 2011, 357, 1797.
33 Pauling L. The nature of the chemical bond, Cornell University Press, USA, 1960, pp. 103.
34 Holender J M, Gillan M J. Physical Review B, 1996, 53, 4399.
35 Opletal G, Drumm D W, Wang R P, et al. The Journal of Physical Chemistry A, 2014, 118, 4790.
36 Golovchak R, Nazabal V, Bureau B, et al. Journal of Non-Crystalline Solids, 2018, 499, 237.
37 Iwakuro H, Tatsuyama C, Ichimura S. Japanese Journal of Applied Physics, 1982, 21, 94.
38 Pethes I, Nazabal V, Chahal R, et al. Journal of Alloys and Compounds, 2016, 673, 149.
39 Xu Q, Yang X Y, Zhang M J, et al. Materials Research Express, 2019, 6, 085212.
[1] 高潮, 谢怀进, 高晓青, 韩迎东. 过渡金属硫化物SERS及食品安全检测研究进展[J]. 材料导报, 2025, 39(9): 24040021-8.
[2] 朱作祥, 骆祚森, 李建林, 邓华锋, 王乐华. 含水状态对硅质胶结砂岩抗拉特性的影响及颗粒流模拟[J]. 材料导报, 2025, 39(9): 24010198-9.
[3] 钱如胜, 叶志波, 张云升, 赵儒泽, 孔德玉, 杨杨, 聂海波. 固碳强化再生粗骨料对其混凝土力学强度及体积稳定性的影响[J]. 材料导报, 2025, 39(9): 24020155-6.
[4] 苟清懿, 廖华, 陈凤阳, 曾瑞林, 刘慧哲, 杨妮, 侯彦青, 谢刚. 锂离子电池中锗基负极材料的构建及改性研究[J]. 材料导报, 2025, 39(8): 24050228-11.
[5] 韩帅文, 朱可晟, 刘长洋, 刘子良, 卞刘振, 杨礼林. 固体氧化物电池金属连接体锰钴涂层材料研究进展[J]. 材料导报, 2025, 39(8): 23100253-6.
[6] 来仁杰, 辛俊伟, 王磊, 王旭东, 吕永涛. 电化学阻抗谱技术在水处理分离膜研究中的应用进展[J]. 材料导报, 2025, 39(8): 24040168-9.
[7] 陈洋, 李增祎, 吴智, 邓承继, 娄晓明, 李勇庆, 谭嘉琳, 丁军, 余超. 催化剂添加量和温度对催化氮化制备低碳MgO-C耐火材料显微结构演变的影响[J]. 材料导报, 2025, 39(8): 24030031-5.
[8] 雒亿平, 邢美光, 王德法, 易万成, 杨连碧, 薛国斌. 赤铁矿对偏高岭土基地聚物力学性能及反应机理的影响[J]. 材料导报, 2025, 39(8): 24040075-8.
[9] 刘宇, 张健, 庞小通, 周小杰, 卢先正, 陈小敏, 李佳豪, 彭平. 镧镍系合金对氢化镁组织结构与储氢性能的影响及机理[J]. 材料导报, 2025, 39(8): 24040039-6.
[10] 陈新, 罗洪杰, 王理, 吴林丽, 栢天舒, 廉德良. 基于二维图像和三维模型的泡沫铝结构表征的差异[J]. 材料导报, 2025, 39(8): 24030173-8.
[11] 陈旭, 廖静, 谭理, 李海进. 金属卤化物钙钛矿材料自掺杂研究进展[J]. 材料导报, 2025, 39(7): 24020097-9.
[12] 李艺, 刘敬肖, 史非, 杨大毅, 田紫薇, 王美玉, 万佳翔, 陈超凡, 吕振杰. 基于草酸热还原制备CsxWO3用于高效近红外屏蔽薄膜研究[J]. 材料导报, 2025, 39(7): 23060135-8.
[13] 鲍艳, 谢梦爽, 郭茹月, 张婧. VO2智能调温涂层的研究进展[J]. 材料导报, 2025, 39(7): 24030036-7.
[14] 杨军兆, 张戎令, 薛彦瑾, 王小平, 窦晓峥, 宋毅. 基于分形维数的硫酸盐环境下混凝土抗蚀系数及微观机理研究[J]. 材料导报, 2025, 39(7): 24020033-7.
[15] 刘扬, 范怡静, 沈伟建, 王睿鑫, 陈进, 唐宇. 药型罩材料技术研究进展[J]. 材料导报, 2025, 39(7): 24040081-9.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed