Please wait a minute...
材料导报  2025, Vol. 39 Issue (15): 24060003-5    https://doi.org/10.11896/cldb.24060003
  无机非金属及其复合材料 |
真空热处理对金刚石基TaxN薄膜微观结构及电学性能的影响
李灏1,2, 刘宇伦1,2, 刘金龙1, 陈良贤1, 李成明1, 魏俊俊1,2,*
1 北京科技大学新材料技术研究院,北京 100083
2 北京科技大学顺德创新学院,广东 佛山 528399
Effect of Vacuum Heat Treatment on Microstructure and Electrical Properties of Diamond-based TaxN Thin Films
LI Hao1,2, LIU Yulun1,2, LIU Jinlong1, CHEN Liangxian1, LI Chengming1, WEI Junjun1,2,*
1 Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
2 Shunde Graduate School, University of Science and Technology Beijing, Foshan 528399, Guangdong, China
下载:  全 文 ( PDF ) ( 20370KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 钽氮化物(TaxN)薄膜因具备优异的电学性能和稳定性,作为薄膜电阻材料广泛应用于无线电子器件及系统中。但随着对薄膜电阻工作频率和工作耗散功率的要求越来越高,传统的陶瓷基底已无法满足这一要求。CVD金刚石因其在射频和热学性能方面具有无可比拟的优势,使其成为高要求、高可靠性薄膜电阻的理想选择。本实验选择CVD金刚石作为电阻基底,采用反应直流磁控溅射在CVD金刚石基片上镀制TaxN薄膜,在高真空度下进行不同温度的真空热处理工艺。分析经不同温度的真空热处理后TaxN薄膜的物相结构和表面形貌变化,应用四探针系统对样品进行了电学性能测试,研究了真空热处理对TaxN薄膜电学性能的影响。结果表明,随着真空热处理温度的升高,TaxN薄膜的物相由近无定形非晶态转变为Ta2N与Ta的混合相,并且TaxN薄膜的电阻率(ρ)逐渐下降,电阻温度系数(TCR)逐渐降低并趋近于0。在550 ℃进行真空热处理可得到附着力良好并且电学性能优异的金刚石基TaxN薄膜。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李灏
刘宇伦
刘金龙
陈良贤
李成明
魏俊俊
关键词:  金刚石  氮钽化物  真空热处理  电阻温度系数    
Abstract: Tantalum nitride (TaxN) thin films are widely used as thin film resistor materials in a wide variety of wireless electronic devices and systems due to their excellent electrical properties and stability, but conventional ceramic substrates are no longer able to meet the increasingly high requirements for thin film resistors in terms of operating frequency and operating power dissipation. CVD diamond is an ideal choice for high demand and high reliability thin film resistors due to its unparalleled advantages in RF and thermal properties. In this work, CVD diamond was chosen as the resistor substrate, and TaxN thin films were coated on the CVD diamond substrate by reactive direct current (DC) magnetron sputtering. Then the vacuum heat treatment process was carried out to the films at different temperatures under high vacuum. The changes of physical structure and surface morphology of TaxN thin films after vacuum heat treatment at different temperatures were analyzed, and the electrical pro-perties of the samples were tested by applying a four-probe system to investigate the effect of vacuum heat treatment on the electrical properties of TaxN thin films. The findings show that, with the increase of vacuum heat treatment temperature, the physical phase of TaxN film transforms from nearly amorphous state to a mixed phase of Ta2N and Ta, the resistivity (ρ) of TaxN film decreases gradually, and the temperature coefficient of resistance (TCR) decreases gradually and tends to be close to zero. The diamond-based TaxN thin films with excellent electrical properties and good adhesion can be obtained by the vacuum heat treatment at a heat treatment temperature of 550 ℃.
Key words:  diamond    tantalum nitride    vacuum heat treatment    TCR
出版日期:  2025-08-10      发布日期:  2025-08-13
ZTFLH:  TN604  
基金资助: 国家自然科学基金(52172037);北京市自然科学基金(2212036);佛山市科技创新专项(BK20BE021;BK22BE006)
通讯作者:  魏俊俊,工学博士,教授,博士研究生导师。主要从事高功率电子器件、热管理材料及器件、碳基薄膜及功能器件的应用开发等研究。weijj@ustb.edu.cn   
作者简介:  李灏,现为北京科技大学新材料技术研究院硕士研究生,在魏俊俊教授的指导下进行研究。目前主要从事高频高功率金刚石基 TaN 薄膜电阻元件制备及其性能研究。
引用本文:    
李灏, 刘宇伦, 刘金龙, 陈良贤, 李成明, 魏俊俊. 真空热处理对金刚石基TaxN薄膜微观结构及电学性能的影响[J]. 材料导报, 2025, 39(15): 24060003-5.
LI Hao, LIU Yulun, LIU Jinlong, CHEN Liangxian, LI Chengming, WEI Junjun. Effect of Vacuum Heat Treatment on Microstructure and Electrical Properties of Diamond-based TaxN Thin Films. Materials Reports, 2025, 39(15): 24060003-5.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24060003  或          https://www.mater-rep.com/CN/Y2025/V39/I15/24060003
1 Shen H, Ramanathan R. Microelectronic Engineering, 2006, 83(2), 206.
2 Dalili N, Liu Q, Ivey D G. Journal of Materials Science, 2012, 48(1), 489.
3 Zaman A, Meletis E. Coatings, 2017, 7(12), 209.
4 Wang C M, Hsieh J H, Li C, et al. Surface and Coatings Technology, 2005, 193(1-3), 173.
5 Gholami M, Khojier K, Monsefi M, et al. Brazilian Journal of Physics, 2022, 52(5), 171.
6 Chen Y, Zhang J, Gou H, et al. Vacuum, 2024, 222, 113092.
7 Chung H C, Liu C P. Surface and Coatings Technology, 2006, 200(10), 3122.
8 Dai W, Shi Y. Coatings, 2021, 11(8), 911.
9 Cuong N D, Kim D J, Kang B D, et al. Journal of Vacuum Science & Technology B, Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 2006, 24(3), 1398.
10 Jia X, Wei J, Huang Y. Surface Technol, 2020, 49, 120.
11 Li N. Thermophysical property of diamond/Al composites prepared by in situ reaction. Ph. D. Thesis, University of Science and Technology Beijing, China, 2023(in Chinese).
李宁. 金刚石/铝复合材料原位反应制备及热物理性能. 博士学位论文, 北京科技大学, 2023.
12 Ma G, Lin G, Gong S, et al. Vacuum, 2013, 89, 244.
13 Riekkinen T, Molarius J, Laurila T, et al. Microelectronic Engineering, 2002, 64(1-4), 289.
14 Lovejoy M, Patrizi G, Roger D, et al. Thin Solid Films, 1996, 290, 513.
15 Liu E, Jin G, Cui X, et al. Physics Procedia, 2013, 50, 438.
16 Grosser M, Münch M, Seidel H, et al. Applied Surface Science, 2012, 258(7), 2894.
17 Salamon K, Radić N, Bogdanović Radović I, et al. Journal of Physics D:Applied Physics, 2016, 49(19), 195301.
18 Woo J C, Kang P S, Kim C I. Journal of Nanoscience and Nanotechnology, 2016, 16(12), 12835.
19 Wang K Y, Chang T C, Chen W C, et al. Vacuum, 2022, 197, 110791.
20 Lee D Y, Kim I S, Song J S. Japanese Journal of Applied Physics, 2002, 41(7R), 4659.
21 Cuong N D, Phuong N M, Kim D J, et al. Journal of Vacuum Science & Technology B, Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 2006, 24(2), 682.
22 Chen H R, Chen Y C, Chang T C, et al. IEEE Electron Device Letters, 2015, 36(3), 271.
23 Guo L. Preparation and study of low TCR tantalum nitride films and power resistors. Master's Thesis, Guilin University of Electronic Technology, China, 2021(in chinese).
郭磊. 低 TCR 钽氮化物薄膜及功率电阻器制备与研究. 硕士学位论文, 桂林电子科技大学, 2021.
24 Liu X, Ma G J, Sun G, et al. Applied Surface Science, 2011, 258(3), 1033.
25 Kuo Y. Journal of the Electrochemical Society, 1992, 139(2), 579.
26 Chang C C, Jeng J, Chen J S. Thin Solid Films, 2002, 413(1-2), 46.
27 Au C, Anderson W, Schmitz D, et al. Journal of Materials Research, 1990, 5(6), 1224.
28 Ye S. Study on the preparation and properties of film resistor with low TCR based on TaN. Master's Thesis, South China University of Technology, China, 2017(in Chinese).
叶升. 基于氮化钽薄膜材料的低 TCR 功率电阻器制备与性能研究, 硕士学位论文, 华南理工大学, 2017.
29 Zhou D B. Structure and electrical transport properties of δ-TaN thin films. Master's Thesis, Tianjin University, China, 2015(in Chinese)
周定邦. 氮化钽薄膜的结构和电输运性质研究, 硕士学位论文, 天津大学. 2015.
[1] 吴国栋, 张文, 伏鑫, 刘辉强, 汪建, 王兵, 熊鹰. 锰气相催化多晶金刚石表面原位石墨烯构筑研究[J]. 材料导报, 2025, 39(5): 24010176-4.
[2] 汪科良, 刑振华, 任守志, 赵蒙, 周晖, 张凯锋, 成志忠, 冯兴国, 曹珍, 贺颖. 超润滑薄膜研究进展及在航天领域的应用展望[J]. 材料导报, 2025, 39(15): 25030083-9.
[3] 王成君, 杨晓东, 张辉, 周幸叶, 戴家赟, 李早阳, 段晋胜, 乔丽, 王广来. 薄界面异质异构晶圆键合技术研究现状及趋势[J]. 材料导报, 2024, 38(24): 23100102-14.
[4] 张雷, 龙伟民, 樊志斌, 都东, 刘大双, 孙志鹏, 李宇佳, 尚勇. CuTi对Ti-6Al-4V钛合金表面金刚石/AlSi复合钎涂层组织与耐磨性能的影响[J]. 材料导报, 2024, 38(21): 23080114-4.
[5] 韩赛斌, 胡秀飞, 王英楠, 王子昂, 张晓宇, 彭燕, 葛磊, 徐明升, 徐现刚, 冯志红. 金刚石单晶中的位错及其对器件影响的研究进展[J]. 材料导报, 2024, 38(20): 23100241-14.
[6] 赵永生, 阎峰云, 刘雪. B掺杂对金刚石热导率的影响[J]. 材料导报, 2024, 38(20): 23080238-8.
[7] 徐东, 金天, 王朋波, 程战. Gd改性Ni-Cr钎料钎焊金刚石组织和性能研究[J]. 材料导报, 2024, 38(19): 23070245-5.
[8] 张鹏伟, 宋惠, 白慧萍, 易剑, 江南, 西村一仁. 太赫兹行波管用金刚石输能窗研究进展[J]. 材料导报, 2024, 38(16): 22120014-9.
[9] 呼丹明, 段锋, 丁冬海, 李杰, 尹育航, 彭凯. 不烧滑板磨削加工用Fe-Ni-Cu-Sn金属基金刚石工具的制备与性能[J]. 材料导报, 2024, 38(10): 22100199-7.
[10] 范舒瑜, 匡同春, 林松盛, 代明江. WC-Co硬质合金/CVD金刚石涂层刀具研究现状[J]. 材料导报, 2023, 37(8): 21110003-10.
[11] 刘震, 尹育航, 敬臣, 武美玲, 陶洪亮, 程彦强. 磨粒有序分布对金刚石锯片切割性能的影响[J]. 材料导报, 2023, 37(8): 21070268-5.
[12] 邓康宁, 肖清泉, 陈豪, 王傲霜, 王江翔. 日盲紫外硅/金刚石异质结光电二极管的结构设计和仿真[J]. 材料导报, 2023, 37(20): 22030226-6.
[13] 陈善登, 白清顺, 窦昱昊, 郭万民, 郭永博, 杜云龙. 金刚石表面生长石墨烯的纳观尺度机理研究进展[J]. 材料导报, 2023, 37(16): 21110098-7.
[14] 董浩永, 任瑛, 张贵锋. MPCVD同质外延单晶金刚石研究进展[J]. 材料导报, 2023, 37(16): 21100019-8.
[15] 杨温鑫, 孟晓燕, 邓欣. 粉体粒径对数字光处理3D打印金刚石复合材料性能的影响[J]. 材料导报, 2023, 37(12): 21120211-6.
[1] . Effect of Annealing on Crystalline Structure and Low-temperature Toughness of
Polypropylene Random Copolymer Dedicated Pipe Materials
[J]. Materials Reports, 2017, 31(4): 65 -69 .
[2] YAN Xin, HUI Xiaoyan, YAN Congxiang, AI Tao, SU Xinghua. Preparation and Visible-light Photocatalytic Activity of Graphite-like Carbon Nitride Two-dimensional Nanosheets[J]. Materials Reports, 2017, 31(9): 77 -80 .
[3] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[4] WANG Xinyu, ZHEN Siqi, DONG Zhengchao, ZHONG Chonggui. Electrocaloric Effects of Ferroelectric Materials: an Overview[J]. Materials Reports, 2017, 31(19): 13 -18 .
[5] WANG Bin, ZHANG Lele, DU Jinjing, ZHANG Bo, LIANG Lisi, ZHU Jun. Applying Electrothermal Reduction Method to the Preparation of V-Ti-Cr-Fe Alloys Serving as Hydrogen Storage Materials[J]. Materials Reports, 2018, 32(10): 1635 -1638 .
[6] GAO Wei, ZHAO Guangjie. Synergetic Oxidation Modification of Wooden Activated Carbon Fiber with Nitric Acid and Ceric Ammonium Nitrate[J]. Materials Reports, 2018, 32(9): 1507 -1512 .
[7] ZHANG Tiangang,SUN Ronglu,AN Tongda,ZHANG Hongwei. Comparative Study on Microstructure of Single-pass and Multitrack TC4 Laser Cladding Layer on Ti811 Surface[J]. Materials Reports, 2018, 32(12): 1983 -1987 .
[8] WANG Bilei, LI Yongcan, SONG Changjiang. A State-of-the-art Review on Yield Point Elongation Phenomenon of Low Carbon Steel[J]. Materials Reports, 2018, 32(15): 2659 -2665 .
[9] ZHU Yaming, ZHAO Chunlei, LIU Xian, ZHAO Xuefei, GAO Lijuan, CHENG Junxia. Study on the Basic Physical Properties of Toluene Soluble Extracted from Coal Tar Pitch[J]. Materials Reports, 2019, 33(2): 368 -372 .
[10] ZHOU Chao, LI Detian, ZHOU Hui, ZHANG Kaifeng, CAO Shengzhu. Non-evaporable Getter Films for Vacuum Packaging of MEMSDevices: an Overview[J]. Materials Reports, 2019, 33(3): 438 -443 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed