Please wait a minute...
材料导报  2025, Vol. 39 Issue (14): 24030082-8    https://doi.org/10.11896/cldb.24030082
  高分子与聚合物基复合材料 |
离子影响油纸绝缘结合性能的分子动力学模拟研究
李亚莎*, 晏欣悦, 王佳敏, 郭玉杰, 陈俊璋, 张永蘅
三峡大学电气与新能源学院,湖北 宜昌 443002
Molecular Dynamics Simulation Study on the Impact of Ions on Binding Properties of Oil-Paper Insulation
LI Yasha*, YAN Xinyue, WANG Jiamin, GUO Yujie, CHEN Junzhang, ZHANG Yongheng
College of Electrical and New Energy, China Three Gorges University, Yichang 443002, Hubei, China
下载:  全 文 ( PDF ) ( 11587KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 油纸绝缘材料在电力设备中广泛应用,其在老化过程中产生的离子可能对油纸绝缘结合性能产生潜在影响。为此采用分子动力学方法模拟了H3O+、OH-、Cl-、Cu2+四种离子在油纸复合系统中的微观行为,并构建无离子的纯油纸复合模型进行对比,深入分析离子介入对油纸复合系统的结合能、氢键作用和均方位移的影响。结果表明,离子的存在使油纸间的结合能减弱,该效应随温度的升高而加剧,并导致油纸绝缘性能下降。另一方面,离子的介入会促进氢键的形成,进而减弱油纸复合体系的结合性能,但也将离子与油之间的强结合能引入到了复合体系中,再加上不同分子间氢键的作用,使得油纸体系的整体稳定性得以维持且有所提升。本工作可为理解离子在油纸绝缘体系中的作用机理提供新视角,并为油纸绝缘材料的性能优化提供理论支撑。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李亚莎
晏欣悦
王佳敏
郭玉杰
陈俊璋
张永蘅
关键词:  油纸绝缘  离子  分子动力学  相互作用机理  氢键    
Abstract: Oil-paper insulation materials are widely utilized in electrical equipment. Ions, as secondary products of aging process in these materials, may potentially impact the binding properties of oil-paper insulation. To investigate this, molecular dynamics simulations were employed to study the microscale behavior of H3O+, OH-, Cl-, and Cu2+ containing the oil-paper composite system. A pure oil-paper composite model without any ions was also constructed for comparative analysis. The study delved into the effects of ion incorporation on the oil-paper composite system, focusing on binding energy, hydrogen bonding, and mean square displacement. Results indicate that the presence of ions weakens the binding energy between oil and paper, and this weakening effect is enhanced as the temperature increases, which demonstrates a trend towards a degradation of the insulating properties of the oil-paper composite system. On the other hand, ion intervention promotes the formation of hydrogen bonds, which weakens the binding properties of the oil-paper composite system. However, it also introduces the binding energy with high interaction strength, which between ions and oil, into the composite system. This effect, along with intermolecular hydrogen bonding, contributes to sustai-ning the overall stability of the system, and furthermore, enhancing it. The findings of this work provide a new insight into the machanistic role of ions in oil-paper insulation systems, and offer a theoretical basis for the optimization of oil-paper insulation materials' performance.
Key words:  oil-paper insulation    ion    molecular dynamics    interaction mechanism    hydrogen bond
出版日期:  2025-07-25      发布日期:  2025-07-29
ZTFLH:  TM211  
基金资助: 国家自然科学基金(51577105)
通讯作者:  * 李亚莎,博士,三峡大学电气与新能源学院教授、博士研究生导师。目前主要从事高电压绝缘技术与电磁场数值仿真计算等方面的研究工作。liyasha@ctgu.edu.cn   
引用本文:    
李亚莎, 晏欣悦, 王佳敏, 郭玉杰, 陈俊璋, 张永蘅. 离子影响油纸绝缘结合性能的分子动力学模拟研究[J]. 材料导报, 2025, 39(14): 24030082-8.
LI Yasha, YAN Xinyue, WANG Jiamin, GUO Yujie, CHEN Junzhang, ZHANG Yongheng. Molecular Dynamics Simulation Study on the Impact of Ions on Binding Properties of Oil-Paper Insulation. Materials Reports, 2025, 39(14): 24030082-8.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24030082  或          https://www.mater-rep.com/CN/Y2025/V39/I14/24030082
1 Guo C, Zhao J, Liu W, et al. Proceedings of the CSEE, 2018, 38(S1), 1 (in Chinese).
郭春义, 赵剑, 刘炜, 等. 中国电机工程学报, 2018, 38(S1), 1.
2 Li K, Li J, Huang Q, et al. Energy Reports, 2023, 9, 1211.
3 Zhang S, Zhao X, Qi B, et al. Transactions of China Electrotechnical Society, 2022, 37(3), 767 (in Chinese).
张书琦, 赵晓林, 齐波, 等. 电工技术学报, 2022, 37(3), 767.
4 Cui Y, Ji S, Zhu L, et al. Transactions of China Electrotechnical Society, 2021, 36(12), 2659 (in Chinese).
崔彦捷, 汲胜昌, 祝令瑜, 等. 电工技术学报, 2021, 36(12), 2659.
5 Liao R J, Zhu M Z, Yang L J, et al. High Voltage Engineering, 2011, 37(2), 268 (in Chinese).
廖瑞金, 朱孟兆, 杨丽君, 等. 高电压技术, 2011, 37(2), 268.
6 Qi C. Extraction method of frequency domain dielectric characteristic parameters based on modified Cole-Cole model of oil-paper in transformer and their properties. Master's Thesis, Chongqing University, China, 2015 (in Chinese).
齐超亮. 变压器油纸绝缘的修正Cole-Cole模型频域介电特征提取及特性研究. 硕士学位论文, 重庆大学, 2015.
7 Wang J, Liu X, Sun J, et al. Proceedings of the CSEE, 2021, 41(21), 7517 (in Chinese).
王健一, 刘雪丽, 孙建涛, 等. 中国电机工程学报, 2021, 41(21), 7517.
8 Huang Y, Jämbeck J, Unge M. ACS Macro Letters, 2017, 6(6), 571.
9 Mei D, Fang Z, Shao T. Proceedings of the CSEE, 2020, 40(4), 1339 (in Chinese).
梅丹华, 方志, 邵涛. 中国电机工程学报, 2020, 40(4), 1339.
10 Li Q, Huang X, Tao L, et al. Transactions of China Electrotechnical Society, 2016, 31(12), 1 (in Chinese).
李庆民, 黄旭炜, 刘涛, 等. 电工技术学报, 2016, 31(12), 1.
11 Leach A R. Briefings in Bioinformatics, 2001, 2(2), 199.
12 Wang X, Li Q, Zhang Y, et al. High Voltage Engineering, 2017, 43(1), 247 (in Chinese).
王学磊, 李庆民, 张颖, 等. 高电压技术, 2017, 43(1), 247.
13 Zhang T, Xiao X, Li Y S, et al. Journal of Atomic and Molecular Physics, 2019, 36(1), 17 (in Chinese).
张涛, 肖霞, 李亚莎, 等. 原子与分子物理学报, 2019, 36(1), 17.
14 Li J, Chen J, Zhu M X, et al. Transactions of China Electrotechnical Society, 2020, 35(9), 1999 (in Chinese).
李加才, 陈继明, 朱明晓, 等. 电工技术学报, 2020, 35(9), 1999.
15 Zhao M, Zhang B, Li J, et al. Transactions of China Electrotechnical Society, 2024, 39(3), 798 (in Chinese).
赵曼卿, 张博, 李健飞, 等. 电工技术学报, 2024, 39(3), 798.
16 Liao R J, Zhu M Z, Yang L J, et al. Physica B:Condensed Matter, 2011, 406(5), 1162.
17 Zeighami A, Kargozarfard Z, Khiabani N P, et al. Journal of Molecular Liquids, 2024, 396, 123996.
18 Zhu M Y, Chen Y F, Gu C, et al. High Voltage Engineering, 2015, 41(2), 432 (in Chinese).
朱孟兆, 陈玉峰, 辜超, 等. 高电压技术, 2015, 41(2), 432.
19 Wang W, Dong W, Li F, et al. High Voltage Engineering, 2019, 45(11), 3539 (in Chinese).
王伟, 董文妍, 李芳义, 等. 高电压技术, 2019, 45(11), 3539.
20 Zadeh M S. Measurement of ion mobility in dielectric liquids. Master's Thesis, Chalmers University of Technology, Sweden, 2011.
21 Katsumi F W, Yoshino K. IEEE Transactions on Dielectrics and Electrical Insulation, 2015, 22(5), 2424.
22 Dan L, Huang Z, Wang F, et al. Proceedings of the CSEE, 2023, 43(11), 4474 (in Chinese).
但林阳, 黄正勇, 王飞鹏, 等. 中国电机工程学报, 2023, 43(11), 4474.
23 Oommen T V. IEEE Electrical Insulation Magazine, 2002, 18(1), 6.
24 Kaplan I R, Rasco J, Lu S T. Environmental Forensics, 2010, 11(1-2), 117.
25 Wang H, Xia W, Yu H, et al. Fuel, 2024, 361, 130522.
26 Theodorou D N, Suter U W. Macromolecules, 1985, 18(7), 1467.
27 Du L, Wang W, Zhang B, et al. High Voltage Engineering, 2018, 44(2), 488 (in Chinese).
杜林, 王五静, 张彼德, 等. 高电压技术, 2018, 44(2), 488.
28 Zhu M. Molecular dynamics study of thermal aging of oil-impregnated insulation paper. Ph. D. Thesis, Chongqing University, China, 2011 (in Chinese).
朱孟兆. 油浸绝缘纸热老化机理的分子动力学研究. 博士学位论文, 重庆大学, 2011.
29 Mazeau K, Heux L. The Journal of Physical Chemistry B, 2003, 107(10), 2394.
30 Hao J, Yang L, Liao R, et al. Proceedings of the CSEE, 2010, 30(19), 120 (in Chinese).
郝建, 杨丽君, 廖瑞金, 等. 中国电机工程学报, 2010, 30(19), 120.
31 Gao S, Yang L, Deng B, et al. RSC Advances, 2017, 7(83), 52475.
32 Lin F, Yang J, Cao H, et al. Journal of Shandong Jianzhu University, 2020, 35(5), 42 (in Chinese).
林凡勤, 杨晶晶, 曹华明, 等. 山东建筑大学学报, 2020, 35(5), 42.
33 Li J, Chen J, Zhu M, et al. Insulating Materials, 2019, 52(6), 79 (in Chinese).
李加才, 陈继明, 朱明晓, 等. 绝缘材料, 2019, 52(6), 79.
34 Chen W, Lickfield G C, Yang C Q. Polymer, 2004, 45(3), 1063.
35 Bazooyar F, Momany F A, Bolton K. Computational and Theoretical Chemistry, 2012, 984, 119.
36 Huai Sun, Zhao Jin, Chunwei Yang, et al. Journal of Molecular Modeling, 2016, 22(2), 47.
37 Ewald P P. Annals of Physics, 1921, 64, 253.
38 Li Qi, Hu Kui, Yu Caihua, et al. Materials Reports, 2023, 37(5), 268 (in Chinese).
栗启, 胡魁, 俞才华, 等. 材料导报, 2023, 37(5), 268.
39 Pan Z, Zhu M, Ye W, et al. Insulating Materials, 2019, 52(11), 55 (in Chinese).
潘振, 朱孟兆, 叶文郁, 等. 绝缘材料, 2019, 52(11), 55
40 Li H X, Wu Y R, Chen R, et al. International Journal of Heat and Mass Transfer, 2024, 225, 125453.
41 Cui Lu, Chen Weigen, Zhang Zhixian, et al. Proceedings of the CSEE, 2018, 38(4), 1248 (in Chinese).
崔鲁, 陈伟根, 张知先, 等. 中国电机工程学报, 2018, 38(4), 1248.
[1] 姚洁丽, 伍小波, 刘紫鹏, 唐繁荣, 廖常平. 锂离子电池负极极片干燥开裂机理与影响因素研究综述[J]. 材料导报, 2025, 39(9): 24070200-7.
[2] 张文浩, 韩文佳, 陈安祥, 周世晋, 王晓龙, 陈仪玮, 李霞. 生物质基硬碳钠离子电池负极材料预处理研究进展[J]. 材料导报, 2025, 39(9): 24030195-12.
[3] 苟清懿, 廖华, 陈凤阳, 曾瑞林, 刘慧哲, 杨妮, 侯彦青, 谢刚. 锂离子电池中锗基负极材料的构建及改性研究[J]. 材料导报, 2025, 39(8): 24050228-11.
[4] 孟小丽, 李晓艳, 闫怡红, 李文博. 基于分子动力学的沥青-集料界面动态黏附及失效特性研究[J]. 材料导报, 2025, 39(8): 24010159-8.
[5] 明阳, 肖登凯, 李玲, 李忻恒, 朱奇阳, 黄登科, 任昊. 亚硝酸型Cl-固化剂在海砂混凝土中的固化机理研究[J]. 材料导报, 2025, 39(8): 23100207-7.
[6] 武金帆, 徐芬, 孙立贤, 廖鹿敏, 管彦洵. 具有抗氧化性的Al-Bi(C2H5OH)3-C多孔块体制氢材料[J]. 材料导报, 2025, 39(8): 24030133-6.
[7] 袁均相, 刘国建, 刘志勇, 佘伟, 张云升. 合金钢在氯盐与硫酸盐作用下的腐蚀行为与机理[J]. 材料导报, 2025, 39(8): 24030019-7.
[8] 鲍艳, 谢梦爽, 郭茹月, 张婧. VO2智能调温涂层的研究进展[J]. 材料导报, 2025, 39(7): 24030036-7.
[9] 谢志翔, 彭溢源, 刘汉语, 朱嗣承, 陈婷. 离子液体辅助水热法制备BiVO4黄色色料及色度研究[J]. 材料导报, 2025, 39(7): 24010243-5.
[10] 王少辉, 李琦, 周梅梅, 杨春云, 谢会成, 吴玉庭, 鹿院卫. 咪唑离子液体基中低温相变材料热物性及储热应用[J]. 材料导报, 2025, 39(7): 23090077-14.
[11] 李翠利, 申纯宇, 杨英, 王兴龙, 汤建伟, 化全县, 刘咏, 刘鹏飞, 丁俊祥, 申博, 王保明. 离子液体在纳米材料制备中的应用进展[J]. 材料导报, 2025, 39(7): 24020066-9.
[12] 续丽辉, 朱兴忠, 徐娟, 阚彩侠. 金纳米星的合成与应用[J]. 材料导报, 2025, 39(6): 23090180-15.
[13] 刘平, 王晨, 韩庆文, 苗攀, 马家玉. 半包覆锰基复合锂离子筛的制备与吸附性能[J]. 材料导报, 2025, 39(4): 23110239-7.
[14] 王喆锦, 王丽爽, 麻忠宇, 董会, 姚建洮, 周勇. 高温热暴露对等离子喷涂YSZ孔隙结构和力学性能的影响[J]. 材料导报, 2025, 39(4): 23110217-7.
[15] 韦浪浪, 田秀刚, 梁健, 苗斌, 杨峰, 李杨, 郑士建. 基于聚焦离子束切割制样的热镀锌汽车钢板漏镀缺陷结构表征与成因分析[J]. 材料导报, 2025, 39(4): 23080246-7.
[1] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[2] LIU Shuaiyang, WANG Aiqin, LYU Shijing, TIAN Hanwei. Interfacial Properties and Further Processing of Cu/Al Laminated Composite: a Review[J]. Materials Reports, 2018, 32(5): 828 -835 .
[3] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[4] CAO Xiuzhong, ZHAO Bing, HAN Xiuquan, HOU Hongliang, QU Haitao. Research on Deformation Mechanism of SiC Fiber Reinforced Titanium Matrix Composites Subjected to High Temperature Axial Tension[J]. Materials Reports, 2017, 31(8): 88 -93 .
[5] ZHANG Jiaqing, ZHANG Bosi, WANG Liufang, FAN Minghao, XIE Hui, LI Wei. The State of the Art of Combustion Behavior of Live Wires and Cables[J]. Materials Reports, 2017, 31(15): 1 -9 .
[6] LI Xueyun, WANG Hezhong. Optimization and Characterization of TEMPO-Mediated Oxidization of Nanochitin Whiskers[J]. Materials Reports, 2018, 32(10): 1597 -1601 .
[7] LI Beigang, WANG Min. High Efficient Adsorption of Dyes by Fe/CTS/AFA Composite[J]. Materials Reports, 2018, 32(10): 1606 -1611 .
[8] ZHAO Qingchen, WANG Jinlong, ZHANG Yuanliang, SHEN Yihong, LIU Shujie. Fatigue Behavior and Fatigue Life for FV520B-I at Different Loading Frequencies[J]. Materials Reports, 2018, 32(16): 2837 -2841 .
[9] ZHOU Chao, WANG Hui, OUYANG Liuzhang, ZHU Min. The State of the Art of Hydrogen Storage Materials for High-pressure Hybrid Hydrogen Vessel[J]. Materials Reports, 2019, 33(1): 117 -126 .
[10] WANG Huifen, LIU Gang, CAO Kangli, YANG Biqi, XU Jun, LAN Shaofei, ZHANG Lixin. Development Status of Carbon Nanotube Materials and Their Application Prospects in Spacecraft[J]. Materials Reports, 2019, 33(z1): 78 -83 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed