Please wait a minute...
材料导报  2025, Vol. 39 Issue (13): 24030165-13    https://doi.org/10.11896/cldb.24030165
  无机非金属及其复合材料 |
3D打印混凝土的长期性能研究进展
张大旺1, 许晓光1, 李辉1,2,3,*
1 西安建筑科技大学材料科学与工程学院,西安 710055
2 教育部生态水泥工程研究中心,西安 710055
3 陕西省生态水泥混凝土工程技术研究中心,西安 710055
Research Progress on Long-term Performance of 3D Printed Concrete
ZHANG Dawang1, XU Xiaoguang1, LI Hui1,2,3,*
1 School of Materials Science and Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China
2 Ecological Cement Engineering Research Center of Ministry, Xi’an 710055, China
3 Shaanxi Ecologicai Cement Concrete Engineering Technology Research Center, Xi’an 710055, China
下载:  全 文 ( PDF ) ( 33947KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 与传统的浇筑混凝土相比,3D打印混凝土(3DPC)施工技术因具有绿色环保和无模板化施工的特点,可提高施工效率和安全性,近年来在建筑行业广受青睐。然而,由于逐层打印过程中形成的薄弱层——层间冷缝,其孔隙含量较高,层间缺陷增加,可能导致抗冻性问题。同时3DPC独特的养护制度(经打印沉积后暴露于高蒸发率的干燥环境中)导致混凝土失水速率加快,产生收缩裂缝,加速混凝土劣化开裂。上述问题势必会对服役于严酷外部环境中的打印构件的长期性能产生不利影响,这一问题已成为3D打印混凝土大规模商业化的瓶颈之一。本文对影响3DPC耐久性的流变参数、打印参数、固化方式、孔隙率、孔隙连通性因素等进行详细综述。鉴于在长期服役过程中,抗冻融破坏和早期收缩开裂性能对3DPC耐久性的影响更为显著,本文着重分析了3DPC的抗冻融循环、早期收缩性的演变过程,为解决工程中出现的耐久性问题提供有效参考,同时提供一些可行性建议、措施,避免或缓解实际应用中所面临的问题,以期推动本行业的快速发展。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张大旺
许晓光
李辉
关键词:  3D打印混凝土  流变特性  孔隙结构  抗冻性  收缩性  固化方式    
Abstract: Compared with traditional pouring concrete, 3D printed concrete (3DPC) construction technology has been widely favored in the construction industry in recent years due to the characteristics of green environmental protection and template free construction, which can improve construction efficiency and safety. However, the weak interlayer cold joints, formed during the layer by layer printing process, have high pore content, increasing the interlayer defects, which may lead to frost resistance issues of the 3DPC. At the same time, owing to the unique curing system of high evaporation rate dry environment after printing and deposition, the water loss rate of 3DPC is accelerated, resulting in shrinkage cracks and accelerating the deterioration and cracking of concrete. The above-mentioned issues will inevitably have an impact on the long-term performance of 3DPC serviced in harsh external environments, which has become one of the bottlenecks in the large-scale commercialization of 3DPC buildings. This summary provides a detailed overview of the rheological parameters, printing parameters, curing methods, porosity, and pore connectivity that affect the durability of 3DPC. Because the impact of freeze-thaw damage and early shrinkage cracking performance on 3DPC is more significant in its long-term performance, here focuses on analyzing the evolution process of 3DPC’s freeze-thaw resistance cycle and early shrinkage, providing effective reference for solving durability problems in engineering. Then provides some feasible suggestions and measures to avoid or alleviate the problems faced in practical applications. This work is excepted to promote the rapid development of 3DPC’s application.
Key words:  3D printed concrete    rheological characteristics    pore structure    frost resistance    contractility    curing mode
出版日期:  2025-07-10      发布日期:  2025-07-21
ZTFLH:  TU528  
基金资助: 国家自然科学基金青年项目(52002307);陕西省教育厅科研计划项目(21JY020)
通讯作者:  *李辉,博士,西安建筑科技大学材料科学与工程学院院长、教授、博士研究生导师。目前主要从事固体废弃物资源化利用、生态材料低碳制备、建筑混凝土3D打印等方面的研究。sunshine_lihui@126.com   
作者简介:  张大旺,博士,西安建筑科技大学材料科学与工程学院副教授、硕士研究生导师。主要从事固体资源化利用与3D打印建筑材料方面的研究。
引用本文:    
张大旺, 许晓光, 李辉. 3D打印混凝土的长期性能研究进展[J]. 材料导报, 2025, 39(13): 24030165-13.
ZHANG Dawang, XU Xiaoguang, LI Hui. Research Progress on Long-term Performance of 3D Printed Concrete. Materials Reports, 2025, 39(13): 24030165-13.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24030165  或          https://www.mater-rep.com/CN/Y2025/V39/I13/24030165
1 Bai M.Price, Theory & Practice, 2021(4), 4(in Chinese).
白玫. 价格理论与实践, 2021(4), 4.
2 CABEE.Construction and Architecture, 2024(2), 46 (in Chinese).
中国建筑节能协会. 建筑, 2024(2), 46.
3 Xiao J, Ji G, Zhang Y, et al.Cement and Concrete Composites, 2021, 122, 104115.
4 Bai G, Wang L, Ma G, et al.Cement and Concrete Composites, 2021, 120, 104037.
5 Zhu B R, Pan J L, Zhou Z X, et al.Materials Reports, 2018, 32(23), 4150(in Chinese).
朱彬荣, 潘金龙, 周震鑫, 等. 材料导报, 2018, 32(23), 4150.
6 Mohan M K, Rahul A V, De Schutter G, et al.Cement and Concrete Composites, 2021, 115, 103855.
7 Xu Z Y, Li H, Zhang D W, et al.Materials Reports, 2023, 37(12), 97(in Chinese).
徐卓越, 李辉, 张大旺, 等. 材料导报, 2023, 37(12), 97.
8 Sikora P, Chougan M, Cuevas K, et al.Applied Nanoscience, 2022, 12(4), 805.
9 Siddika A, Mamun M A A, Ferdous W, et al.Journal of Sustainable Cement-Based Materials, 2020, 9(3), 127.
10 Nodehi M, Asiabanpour B, Omer L, et al.Solid Freeform Fabrication, 2021, 11(14), 1553.
11 Nerella V N, Hempel S, Mechtcherine V.Construction and Building Materials, 2019, 205, 586.
12 Tay Y W D, Ting G H A, Qian Y, et al.Virtual and Physical Prototyping, 2019, 14(1), 104.
13 Van Der Putten J, Deprez M, Cnudde V, et al.Materials, 2019, 12(18), 2993.
14 Van Der Putten J, De Volder M, Van den Heede P, et al. In:International conference on concrete and digital fabrication. Paris, 2020, pp. 500.
15 Schröfl C, Nerella V N, Mechtcherine V. In:International conference on concrete and digital fabrication. Zurich, 2018, pp. 217.
16 Yang L, Sepasgozar S M E, Shirowzhan S, et al.Automation in Construction, 2023, 146, 104671.
17 Ji G, Xiao J, Zhi P, et al.Construction and Building Materials, 2022, 325, 126740.
18 Ma G, Wang L.Frontiers of Structural and Civil Engineering, 2018, 12, 382.
19 Ravina D, Shalon R.Journal Proceedings, 1968, 65(4), 282.
20 Cui T L, Wang L, Ma G W, et al. Materials Reports, 2022, 36(2), 80(in Chinese).
崔天龙, 王里, 马国伟, 等. 材料导报, 2022, 36(2), 80.
21 Baz B, Aouad G, Kleib J, et al.Construction and Building Materials, 2021, 290, 123220.
22 Liu C, Wang X, Chen Y, et al.Cement and Concrete Composites, 2021, 122, 104158.
23 Zhang Y, Zhang Y, Yang L, et al.Materials and Structures, 2021, 54, 1.
24 Moelich G M, Kruger J, Combrinck R. Composites Part B:Engineering, 2020, 200, 108313.
25 Han X, Yan J, Chen T, et al.Construction and Building Materials, 2023, 399, 132564.
26 Van Der Putten J, De Schutter G, Van Tittelboom K. In:International conference on concrete and digital fabrication. Zurich, 2018, pp. 234.
27 Kruger J, Zeranka S, van Zijl G.Construction and Building Materials, 2019, 224, 372.
28 Prem P R, Ravichandran D, Kaliyavaradhan S K, et al.Materials Today:Proceedings, 2022, 65, 1594.
29 Yahia A, Khayat K H.Cement and Concrete Research, 2001, 31(5), 731.
30 Zhang Y S, Zhang Y, Cheng Y D.China Building Materials Science and Technology, 2021, 30(3), 8 (in Chinese).
张云升, 张宇, 陈逸东. 中国建材科技, 2021, 30(3), 8.
31 Tinoco M P, Gouvêa L, Martins K C M, et al.Construction and Building Materials, 2023, 365, 130046.
32 Yu Q, Zhu B, Li X, et al.Journal of Building Engineering, 2023, 72, 106621.
33 Zhu L L, Yang Z, Zhao Y, et al.Materials Reports, 2023, 37(12), 111(in Chinese).
朱伶俐, 杨章, 赵宇, 等. 材料导报, 2023, 37(12), 111.
34 Dejaeghere I, Sonebi M, De Schutter G.Construction and Building Materials, 2019, 222, 73.
35 Zhu B, Pan J, Nematollahi B, et al.Materials & Design, 2019, 181, 108088.
36 Zhao Y, Wu X K, Zhu L L, et al.Materials Reports, 2023, 37(6), 113(in Chinese).
赵宇, 武喜凯, 朱伶俐, 等. 材料导报, 2023, 37(6), 113.
37 Liu Y, Li M Y, Yan P Y.Journal of the Chinese Ceramic Society, 2019, 47(5), 594 (in Chinese).
刘宇, 黎梦圆, 阎培渝. 硅酸盐学报, 2019, 47(5), 594.
38 Ahari R S, Erdem T K, Ramyar K.Cement and Concrete Composites, 2015, 59, 26.
39 Long W J, Tao J L, Lin C, et al.Journal of Cleaner Production, 2019, 239, 118054.
40 Zhang L Q, Guo J Z, Li H Y, et al.Acta Materiae Compositae Sinica, https,//doi.org/10.13801/j.cnki.fhclxb.20240428.002(in Chinese).
张立卿, 郭绵珍, 李洪艳, 等. 复合材料学报, https,//doi.org/10.13801/jcnki.fhclxb.20240428.002.
41 Wang Z, Jia L, Deng Z, et al.Construction and Building Materials, 2022, 349, 128708.
42 Wolfs R J M, Bos F P, Salet T A M.Cement and Concrete Research, 2019, 119, 132.
43 Zareiyan B, Khoshnevis B.Automation in Construction, 2017, 81, 112.
44 Xu H, Sun X Y, Wang H L, et al.Journal of Hydroelectric Engineering, 2022, 41(1), 42 (in Chinese).
徐辉, 孙晓燕, 王海龙, 等. 水力发电学报, 2022, 41(1), 42.
45 Santos P M D, Júlio E N B S.ACI Materials Journal, 2011, 108(4), 449.
46 Zhang N, Sanjayan J.Cement and Concrete Composites, 2023, 137, 104939.
47 Huang X, Yang W, Song F, et al.Construction and Building Materials, 2022, 335, 127496.
48 Kazemian A, Yuan X, Cochran E, et al.Construction and Building Materials, 2017, 145, 639.
49 Souza M T, Ferreira I M, de Moraes E G, et al.Journal of Building Engineering, 2020, 32, 101833.
50 Ma L, Zhang Q, Lombois-Burger H, et al.Journal of Building Engineering, 2022, 61, 105250.
51 Buswell R A, De Silva W R L, Jones S Z, et al.Cement and Concrete Research, 2018, 112, 37.
52 Shakor P, Nejadi S, Paul G.Materials, 2019, 12(10), 1708.
53 Kwon H.Experimentation and analysis of contour crafting (CC) process using uncured ceramic materials, University of Southern California Press, USA, 2002, pp. 32.
54 Perrot A, Rangeard D, Courteille E.Construction and Building Materials, 2018, 172, 670.
55 Bos F, Wolfs R, Ahmed Z, et al.Virtual and Physical Prototyping, 2016, 11(3), 209.
56 Kontovourkis O, Tryfonos G.Automation in Construction, 2020, 110, 103005.
57 Rahul A V, Santhanam M, Meena H, et al.Cement and Concrete Composites, 2019, 97, 13.
58 Xu J, Ding L, Cai L, et al.Automation in Construction, 2019, 104, 95.
59 Liu Z, Li M, Tay Y W D, et al.Additive Manufacturing, 2020, 34, 101190.
60 Atsbha T G, Zhutovsky S.Construction and Building Materials, 2022, 324, 126706.
61 Niu X J, Li Q B, Liu W J, et al.Construction and Building Materials, 2020, 260, 119791.
62 Ma L, Zhang Q, Jia Z, et al.Construction and Building Materials, 2022, 315, 125731.
63 Alsayed S H, Amjad M A.Cement and Concrete Research, 1994, 24(7), 1390.
64 Yan P Y, Cui Q.Journal of the Chinese Ceramic Society, 2015, 43(2), 133 (in Chinese).
阎培渝, 崔强. 硅酸盐学报, 2015, 43(2), 133.
65 Sun J L, Zhang C X, Mao J Z, et al.Materials Reports,2024, 38(18), 23050059 (in Chinese).
孙嘉伦, 张春晓, 毛继泽, 等. 材料导报, 2024, 38(18), 23050059.
66 Powers T C.Powers—Cement Hydration and Curing, 1948, 27, 178.
67 Scrivener K, Ouzia A, Juilland P, et al.Cement and Concrete Research, 2019, 124, 105823.
68 Jennings H M, Thomas J J, Rothstein D, et al.Handbook of porous solids, Wiley, 2002, pp. 2971.
69 Papadakis V G, Fardis M N, Vayenas C G.Materials Journal, 1992, 89(2), 119.
70 Siddiqui M S, Nyberg W, Smith W, et al.ACI Materials Journal, 2013, 110(3), 315.
71 Kronlöf A, Leivo M, Sipari P.Cement and Concrete Research, 1995, 25(8), 1747.
72 Zhang J, Hou D, Gao Y, et al.Drying Technology, 2011, 29(6), 689.
73 Almusallam A A.Cement and Concrete Composites, 2001, 23(4), 353.
74 Patel R G, Killoh D C, Parrott L J, et al.Materials and Structures, 1988, 21, 192.
75 Bran A P C. In:International Conference on Concrete and Digital Fabrication. Zurich, 2018, pp. 113.
76 Kruger J, Cicione A, Bester F, et al. In:International Conference on Concrete and Digital Fabrication. Paris, 2020, pp. 449.
77 Cicione A, Kruger J, Walls R S, et al.Fire Safety Journal, 2021, 120, 103075.
78 Powers T C.Journal of the American Ceramic Society, 1958, 41(1), 1.
79 Birchall J D, Howard A J, Kendall K.Nature, 1981, 289(5796), 388.
80 Song S M, Wang L.Concrete technology, WuHan University of Technology press, 2013, pp. 130 (in Chinese).
宋少民, 王林. 混凝土学, 武汉理工大学出版社, 2013, pp. 130.
81 Nodehi M, Aguayo F, Nodehi S E, et al.Automation in Construction, 2022, 142, 104479.
82 Wang L, Xiao W, Wang Q, et al.Cement and Concrete Composites, 2022, 133, 104693.
83 Wang Y, Ge Y, Monteiro P J M.Finite Elements in Analysis and Design, 2021, 188, 103535.
84 Writing-review H Z, Cheng W, Software V. Measurement, 2021, 174, 109080.
85 Paul S C, Van Zijl G P A G, Tan M J, et al.Rapid Prototyping Journal, 2018, 24(4), 784.
86 Wittmann F H.Cement and Concrete Research, 1976, 6(1), 49.
87 Zhou Y X, Wang H L, Cheng F X.Materials Reports, 2023, 37(S1), 241 (in Chinese).
周月霞, 王海龙, 程福星. 材料导报, 2023, 37(S1), 241.
88 Hao T, Qiao T L, Leng F G, et al.Concrete, 2022(12), 22 (in Chinese).
郝彤, 乔天龙, 冷发光, 等. 混凝土, 2022(12), 22.
89 Zhang C, Nerella V N, Krishna A, et al.Cement and Concrete Compo-sites, 2021, 122, 104155.
90 Ahmadi B H.Materials and Structures, 2000, 33, 511.
91 Zhang H, Hao L, Zhang S, et al.Additive Manufacturing, 2023, 74, 103722.
92 Sun H Y, Zhang X Z, Tao W H, et al.Acta Materiae Compositae Sinica, 2024, 41(2), 609 (in Chinese).
孙浩洋, 张秀芝, 陶文宏, 等. 复合材料学报, 2024, 41(2), 609.
93 Kumarappa D B, Peethamparan S, Ngami M.Cement and Concrete Research, 2018, 109, 1.
94 Shahmirzadi M R, Gholampour A, Kashani A, et al.Cement and Concrete Composites, 2021, 124, 104238.
95 Federowicz K, Kaszyńska M, Zieliński A, et al.Materials, 2020, 13(11), 2590.
96 Van Der Putten J, Snoeck D, De Coensel R, et al.Journal of Building Engineering, 2021, 35, 102059.
97 Liu X, Li Q, Li J.Materials Letters, 2022, 319, 132253.
98 Moelich G M, Kruger P J, Combrinck R.Cement and Concrete Research, 2022, 159, 106862.
99 Schröfl C, Erk K A, Siriwatwechakul W, et al.Cement and Concrete Research, 2022, 151, 106648.
100 Liu J, Ou Z, Mo J, et al.Construction and Building Materials, 2017, 155, 239.
101 Corinaldesi V, Nardinocchi A, Donnini J.Construction and Building Materials, 2015, 91, 171.
102 Choi H, Lim M, Kitagaki R, et al.Construction and Building Materials, 2015, 84, 468.
[1] 李刊, 魏智强, 路承功, 蒲育. 纳米SiO2改性聚合物水泥基复合材料孔隙结构演变特征及强度预测[J]. 材料导报, 2025, 39(6): 24070202-10.
[2] 张宏飞, 张久鹏, 王帅, 陈子璇, 李哲, 裴建中. 沥青化学组分与宏观性能靶向关系研究综述与展望[J]. 材料导报, 2025, 39(4): 24010162-15.
[3] 宋国锋, 张师伟, 刘俊, 刘建坤, 梁思明. 硫铝酸盐膨胀剂对水泥砂浆早期徐变与内部湿度的影响[J]. 材料导报, 2025, 39(4): 23100111-7.
[4] 王喆锦, 王丽爽, 麻忠宇, 董会, 姚建洮, 周勇. 高温热暴露对等离子喷涂YSZ孔隙结构和力学性能的影响[J]. 材料导报, 2025, 39(4): 23110217-7.
[5] 赵庭煜, 邵亮, 姬占有, 何寅坤, 王广静, 张涛. 高灵敏、强粘附性导电水凝胶的制备及在柔性传感中的应用[J]. 材料导报, 2025, 39(4): 24010212-11.
[6] 田威, 郭健, 王文奎, 张景生, 王凯星. 高温后混凝土毛细吸水特性的核磁共振分析及其力学性能研究[J]. 材料导报, 2025, 39(3): 23070160-7.
[7] 景宏君, 张超伟, 高萌, 丁仁红, 李毅民, 康明珂, 周子涵, 朱韶峰. 骨架密实型水泥稳定煤矸石级配设计与性能研究[J]. 材料导报, 2025, 39(2): 22040252-7.
[8] 张永成, 曹锋, 郑明杰, 李双营, 欧阳浩. 青稞秸秆灰改性氯氧镁水泥的抗盐卤侵蚀性能与细微观结构[J]. 材料导报, 2025, 39(13): 24050241-8.
[9] 陈庆发, 杨文雄, 吴家有, 牛文静. 水灰比对薄喷衬层材料抗拉性能影响的宏微观试验研究[J]. 材料导报, 2024, 38(8): 22090309-7.
[10] 都思哲, 张淼, 张玉, Selyutina Nina, Smirnov Ivan, 马树娟, 董晓强, 刘元珍. 基于CT图像三维重建的高温下再生混凝土孔隙特征研究[J]. 材料导报, 2024, 38(5): 22060128-11.
[11] 李再久, 夏臣平, 刘明诏, 金青林. 骨组织工程镁基支架的制备研究进展[J]. 材料导报, 2024, 38(4): 22050324-11.
[12] 黄煌煌, 滕乐, 高小建, 刘正楠. 流变与浇筑方式对UHPC纤维分散和取向的影响[J]. 材料导报, 2024, 38(24): 23100032-6.
[13] 康迎杰, 郭自利, 叶斌斌, 潘鹏. ECC全包裹混凝土的抗硫酸盐侵蚀和抗冻性能[J]. 材料导报, 2024, 38(22): 22100093-7.
[14] 张铖, 王振地, 史鑫宇, 李庭忠, 孙国星, 梁瑞. 超吸水树脂对高性能水泥基复合材料收缩和水化的影响[J]. 材料导报, 2024, 38(22): 23090194-7.
[15] 董必钦, 张枭, 刘源涛, 何晓伟, 王琰帅. 硫酸铝对高掺量流化床粉煤灰基泡沫混凝土性能的影响[J]. 材料导报, 2024, 38(20): 23090133-8.
[1] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[2] LIU Shuaiyang, WANG Aiqin, LYU Shijing, TIAN Hanwei. Interfacial Properties and Further Processing of Cu/Al Laminated Composite: a Review[J]. Materials Reports, 2018, 32(5): 828 -835 .
[3] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[4] CAO Xiuzhong, ZHAO Bing, HAN Xiuquan, HOU Hongliang, QU Haitao. Research on Deformation Mechanism of SiC Fiber Reinforced Titanium Matrix Composites Subjected to High Temperature Axial Tension[J]. Materials Reports, 2017, 31(8): 88 -93 .
[5] ZHANG Jiaqing, ZHANG Bosi, WANG Liufang, FAN Minghao, XIE Hui, LI Wei. The State of the Art of Combustion Behavior of Live Wires and Cables[J]. Materials Reports, 2017, 31(15): 1 -9 .
[6] LI Xueyun, WANG Hezhong. Optimization and Characterization of TEMPO-Mediated Oxidization of Nanochitin Whiskers[J]. Materials Reports, 2018, 32(10): 1597 -1601 .
[7] LI Beigang, WANG Min. High Efficient Adsorption of Dyes by Fe/CTS/AFA Composite[J]. Materials Reports, 2018, 32(10): 1606 -1611 .
[8] ZHAO Qingchen, WANG Jinlong, ZHANG Yuanliang, SHEN Yihong, LIU Shujie. Fatigue Behavior and Fatigue Life for FV520B-I at Different Loading Frequencies[J]. Materials Reports, 2018, 32(16): 2837 -2841 .
[9] ZHOU Chao, WANG Hui, OUYANG Liuzhang, ZHU Min. The State of the Art of Hydrogen Storage Materials for High-pressure Hybrid Hydrogen Vessel[J]. Materials Reports, 2019, 33(1): 117 -126 .
[10] WANG Huifen, LIU Gang, CAO Kangli, YANG Biqi, XU Jun, LAN Shaofei, ZHANG Lixin. Development Status of Carbon Nanotube Materials and Their Application Prospects in Spacecraft[J]. Materials Reports, 2019, 33(z1): 78 -83 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed