Please wait a minute...
材料导报  2025, Vol. 39 Issue (10): 24040003-5    https://doi.org/10.11896/cldb.24040003
  高分子与聚合物基复合材料 |
刮涂型人工脱粘层的力学和烧蚀性能研究
李洋1,2,*, 陈雁彬1, 胡俊杰1, 吴谦秋1, 黄海龙1
1 湖北航天化学技术研究所,湖北 襄阳 441003
2 航天化学能源全国重点实验室,湖北 襄阳 441003
Research on the Mechanical and Ablation Properties of Scratchable Stress Release Materials
LI Yang1,2,*, CHEN Yanbin1, HU Junjie1, WU Qianqiu1, HUANG Hailong1
1 Hubei Institute of Aerospace Chemotechnology, Xiangyang 441003, Hubei, China
2 National Key Laboratory of Aerospace Chemical Power, Xiangyang 441003, Hubei, China
下载:  全 文 ( PDF ) ( 7006KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为提高人工脱粘层的成型效率,期望设计一种可刮涂成型的人工脱粘材料。为此,研究了碳纤维粉、聚酰亚胺纤维、芳纶浆粕对端羧基液体丁腈橡胶(CTBN)基复合材料力学和烧蚀性能的影响。结果发现,添加适量碳纤维粉能够将复合材料的拉伸强度由3.97 MPa提升至4.54 MPa,材料的耐烧蚀性能也有一定的提高;添加聚酰亚胺纤维虽然能够将材料的氧乙炔线烧蚀率由0.292 mm/s降低至0.151 mm/s,但力学性能有明显的下降;而添加芳纶浆粕能够大幅提升烧蚀性能同时保留材料良好的力学性能。进一步地,添加0.9 phr芳纶浆粕的CTBN基复合材料的拉伸强度为3.96 MPa、断裂伸长率为144%、烧蚀率为0.165 mm/s、与EPDM基复合材料的粘接强度为1.80 MPa,且可刮涂成型,具备作为刮涂型人脱层的潜力。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李洋
陈雁彬
胡俊杰
吴谦秋
黄海龙
关键词:  人工脱粘层  端羧基液体丁腈橡胶(CTBN)  力学性能  烧蚀性能    
Abstract: To enhance the efficiency of stress release layer formation, a novel scratchable composite is devised to develop the stress-release material. Herein, the effects of carbon fiber powder, polyimide fiber, and aramid pulp on the mechanical and ablation properties of CTBN-based composites are studied. It is found that the addition of carbon fiber powder can increase the tensile strength of the composites from 3.97 MPa to 4.54 MPa, and the ablation resistance of the composites is also improved to a certain extent. In addition, the addition of polyimide fiber can reduce the line ablation rate of the composites from 0.292 mm/s to 0.151 mm/s, but the mechanical properties are also significantly reduced. Moreover, the addition of aramid pulp can greatly improve the ablation performance while retaining the most mechanical properties of the composites. Furthermore, with 0.9 phr aramid pulp added, the CTBN-based composites maintain the tensile strength of 3.96 MPa, the elongation at break of 144%, the ablation rate of 0.165 mm/s, and the tear strength from EPDM-based composites of 1.80 MPa, and can be formed through scrape coating, which is a potential candidate for the scratchable stress release materials.
Key words:  stress release material    carboxylated-terminated liquid acrylonitrile rubber(CTBN)    mechanical property    ablation property
出版日期:  2025-05-25      发布日期:  2025-05-13
ZTFLH:  TQ333.7  
基金资助: 湖北省科技厅技术攻关项目(2023BAA004);湖北省自然科学基金联合基金项目(2022CFD088)
通讯作者:  *李洋,高级工程师,任职于湖北航天化学技术研究所,主要从事固体火箭发动机绝热层设计的研究。shuimudingtian@163.com   
引用本文:    
李洋, 陈雁彬, 胡俊杰, 吴谦秋, 黄海龙. 刮涂型人工脱粘层的力学和烧蚀性能研究[J]. 材料导报, 2025, 39(10): 24040003-5.
LI Yang, CHEN Yanbin, HU Junjie, WU Qianqiu, HUANG Hailong. Research on the Mechanical and Ablation Properties of Scratchable Stress Release Materials. Materials Reports, 2025, 39(10): 24040003-5.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24040003  或          https://www.mater-rep.com/CN/Y2025/V39/I10/24040003
1 Wang X R, Wang G, Qiang H F, et al. Journal of Solid Rocket Technology, 2019, 42(3), 334(in Chinese).
王学仁, 王广, 强洪夫, 等. 固体火箭技术, 2019, 42(3), 334.
2 Han Z Q, Wu Z P, Wu D Z. Aerospace Materials & Technology, 2013, 43(6), 45(in Chinese).
韩忠强, 吴战鹏, 武德珍. 宇航材料工艺, 2013, 43(6), 45.
3 Lyu R G, Li T S. Lubrication Engineering, 2002, 27(6), 16(in Chinese).
吕仁国, 李同生. 润滑与密封, 2002, 27(6), 16.
4 Chen X, Xiao F L, Yuan W N. China Rubber Industry, 2013, 60(11), 671(in Chinese).
陈翔, 肖风亮, 袁维娜. 橡胶工业, 2013, 60(11), 671.
5 Zhang Y, Liu X F, Yan S T, et al. Journal of Functional Materials, 2020, 51(11), 11103(in Chinese).
张颖, 刘晓峰, 阎述韬, 等. 功能材料, 2020, 51(11), 11103.
6 Wang C, Xiao J Y, Liang T F, et al. Journal of Solid Rocket Technology, 2018, 41(3), 376(in Chinese).
王春, 校金友, 梁腾飞, 等. 固体火箭技术, 2018, 41(3), 376.
7 Liu J K, Pan L J. Composites Science and Engineering, 2021(2), 72(in Chinese).
刘吉凯, 潘利剑. 复合材料科学与工程, 2021(2), 72.
8 Zhou R J, Li C Q, Yang X H, et al. Materials Reports, 2015, 29(4), 60(in Chinese).
周荣杰, 李超群, 杨晓红, 等. 材料导报, 2015, 29(4), 60.
9 Wen H Y, Zhang W H, Liu T, et al. Journal of Materials Engineering, 2021, 49(3), 100(in Chinese).
文华银, 张文焕, 刘涛, 等. 材料工程, 2021, 49(3), 100.
10 Zhang C G, Lu G L, Zhang J S, et al. Silicone Material, 2005, 19(1), 1(in Chinese).
张长贵, 鲁国林, 张劲松, 等. 有机硅材料, 2005, 19(1), 1.
11 Yin Z S, Liu Y H, Liu Y H. Aerospace Manufacturing Technology, 2016(5), 63(in Chinese).
尹正帅, 刘义华, 刘艳辉. 航天制造技术, 2016(5), 63.
12 Zhang H B, Yin J, Xiong X. Materials Reports, 2005, 19(7), 97(in Chinese).
张红波, 尹健, 熊翔. 材料导报, 2005, 19(7), 97.
[1] 董洪年, 杨明, 林天一, 陈沛然, 魏婷婷. 针刺密度对碳/碳复合材料力学行为影响的仿真分析[J]. 材料导报, 2025, 39(9): 23120170-6.
[2] 夏益健, 张宇, 张云升, 朱微微, 朱文轩. 磨细凝灰岩制备机制砂混凝土力学性能研究[J]. 材料导报, 2025, 39(9): 24030199-7.
[3] 钱如胜, 叶志波, 张云升, 赵儒泽, 孔德玉, 杨杨, 聂海波. 固碳强化再生粗骨料对其混凝土力学强度及体积稳定性的影响[J]. 材料导报, 2025, 39(9): 24020155-6.
[4] 燕伟, 李驰, 邢渊浩, 高瑜. 循环流化床多元固废粉煤灰基水泥胶砂固碳试验研究[J]. 材料导报, 2025, 39(9): 24010111-7.
[5] 陈港明, 王辉, 黄雪飞. 温轧对低铬FeCrAl合金显微组织及室温和高温力学性能的影响[J]. 材料导报, 2025, 39(9): 24060057-11.
[6] 陈继伟, 朱慧雯, 王海镔, 桑建权, 李艳花, 熊芬, 罗建新. 利用Hofmeister效应一步法制备离子导电耐低温强韧PVA水凝胶[J]. 材料导报, 2025, 39(9): 24050045-7.
[7] 陈永达, 胡智淇, 关岩, 常钧, 陈兵. 羟丙基甲基纤维素与硅烷偶联剂对磷酸镁基钢结构防火涂料性能的影响[J]. 材料导报, 2025, 39(8): 24010194-7.
[8] 雒亿平, 邢美光, 王德法, 易万成, 杨连碧, 薛国斌. 赤铁矿对偏高岭土基地聚物力学性能及反应机理的影响[J]. 材料导报, 2025, 39(8): 24040075-8.
[9] 李琼, 安宝峰, 苏睿, 乔宏霞, 王超群. 废玻璃粉透水混凝土物理性能及复合胶凝体系微观机理研究[J]. 材料导报, 2025, 39(8): 23100186-11.
[10] 程焱, 张弦, 苏志诚, 刘静, 吴开明. 具有TRIP效应的先进高强度钢力学性能及腐蚀行为的研究进展[J]. 材料导报, 2025, 39(8): 24020115-8.
[11] 徐焜, 黄子悦, 程云浦, 钱小妹. GNPs改性环氧复合材料等效弹性性能数值预测模型[J]. 材料导报, 2025, 39(8): 24040190-4.
[12] 董硕, 郑立森, 史奉伟, 王来, 刘哲. 钢纤维地聚物再生混凝土力学性能及强度指标换算[J]. 材料导报, 2025, 39(7): 24100219-8.
[13] 谢昭男, 陈军红, 黄西成, 邱勇. 橡胶的热老化力学性能与本构关系研究进展[J]. 材料导报, 2025, 39(7): 23120036-16.
[14] 段明翰, 覃源, 李阳, 耿凯强. 寒冷地区腈纶纤维混凝土力学性能及多层感知器神经网络预测[J]. 材料导报, 2025, 39(6): 23110143-9.
[15] 杨旭, 张天理, 朱志明, 徐连勇, 陈赓, 杨尚磊, 方乃文. 纳米颗粒对铝合金焊接凝固裂纹抑制机理及影响因素的研究进展[J]. 材料导报, 2025, 39(6): 24030070-10.
[1] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[2] LIU Shuaiyang, WANG Aiqin, LYU Shijing, TIAN Hanwei. Interfacial Properties and Further Processing of Cu/Al Laminated Composite: a Review[J]. Materials Reports, 2018, 32(5): 828 -835 .
[3] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[4] CAO Xiuzhong, ZHAO Bing, HAN Xiuquan, HOU Hongliang, QU Haitao. Research on Deformation Mechanism of SiC Fiber Reinforced Titanium Matrix Composites Subjected to High Temperature Axial Tension[J]. Materials Reports, 2017, 31(8): 88 -93 .
[5] ZHANG Jiaqing, ZHANG Bosi, WANG Liufang, FAN Minghao, XIE Hui, LI Wei. The State of the Art of Combustion Behavior of Live Wires and Cables[J]. Materials Reports, 2017, 31(15): 1 -9 .
[6] LI Xueyun, WANG Hezhong. Optimization and Characterization of TEMPO-Mediated Oxidization of Nanochitin Whiskers[J]. Materials Reports, 2018, 32(10): 1597 -1601 .
[7] LI Beigang, WANG Min. High Efficient Adsorption of Dyes by Fe/CTS/AFA Composite[J]. Materials Reports, 2018, 32(10): 1606 -1611 .
[8] ZHAO Qingchen, WANG Jinlong, ZHANG Yuanliang, SHEN Yihong, LIU Shujie. Fatigue Behavior and Fatigue Life for FV520B-I at Different Loading Frequencies[J]. Materials Reports, 2018, 32(16): 2837 -2841 .
[9] ZHOU Chao, WANG Hui, OUYANG Liuzhang, ZHU Min. The State of the Art of Hydrogen Storage Materials for High-pressure Hybrid Hydrogen Vessel[J]. Materials Reports, 2019, 33(1): 117 -126 .
[10] WANG Huifen, LIU Gang, CAO Kangli, YANG Biqi, XU Jun, LAN Shaofei, ZHANG Lixin. Development Status of Carbon Nanotube Materials and Their Application Prospects in Spacecraft[J]. Materials Reports, 2019, 33(z1): 78 -83 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed