Please wait a minute...
材料导报  2025, Vol. 39 Issue (10): 24020149-10    https://doi.org/10.11896/cldb.24020149
  无机非金属及其复合材料 |
流延工艺制备氧化锆燃料电池薄膜的研究进展
刘庆1, 欧阳雪琼2, 刘文财1, 吕洋1, 王双喜1,*
1 汕头大学工学院,广东 汕头 515063
2 佛山市百瑞新材料技术有限公司,广东 佛山 528000
Advances in the Production of Zirconia Thin Films for SOFC by Tape Casting
LIU Qing1, OUYANG Xueqiong2, LIU Wencai1, LYU Yang1, WANG Shuangxi1,*
1 College of Engineering, Shantou University, Shantou 515063, Guangdong, China
2 Foshan Bairui Advanced Material & Technology Co., Ltd., Foshan 528000, Guangdong, China
下载:  全 文 ( PDF ) ( 21530KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 8%(摩尔分数,如无特别说明,下同)氧化钇稳定的氧化锆(8YSZ)薄膜是固体氧化物燃料电池(SOFC)的核心部件,直接影响SOFC的输出性能。本文介绍了氧化锆电解质薄膜化工艺,详细地分析了烧结助剂、粘结剂体系以及浆料流变性对氧化锆浆料的影响,总结了流延速度、干燥环境等流延工艺参数对氧化锆流延生带厚度以及品质的作用,并对近年来氧化锆生带的先进烧结方式进行了阐述,讨论了电解质厚度及结构对氧化锆电解质薄膜致密度与离子电导率的影响,最后对流延成型工艺制备高品质的氧化锆薄膜的前景和方向进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘庆
欧阳雪琼
刘文财
吕洋
王双喜
关键词:  流延成型  氧化锆薄膜  8YSZ  电解质  SOFC  烧结助剂  离子电导率    
Abstract: 8 mol% yttria-stabilized zirconia (8YSZ) thin films are the core components of solid oxide fuel cells (SOFCs), which directly affect the output performance of SOFCs. In this paper, the characteristics of the thinning process of zirconia electrolyte are introduced. The effects of sintering additives, binder systems and slurry rheology on zirconia slurry are analyzed in detail. The influences of tape casting process parameters including casting speed and drying environment on the thickness and quality of zirconia green tapes are summarized. The advanced sintering me-thods of zirconia green tapes are described, and the effects of electrolyte thickness and structure on the density and ionic conductivity of zirconia electrolyte films are discussed. Finally, the research direction of tape casting process for preparation of high-quality zirconia thin films has been prospected.
Key words:  tape casting    zirconia thin film    8YSZ    electrolyte    solid oxide fuel cell (SOFC)    sintering additives    ionic conductivity
出版日期:  2025-05-25      发布日期:  2025-05-13
ZTFLH:  TB34  
基金资助: 广东省普通高校创新团队资助项目(2020KCXTD012)
通讯作者:  *王双喜,博士,汕头大学工学院教授、教授级高级工程师。目前主要从事陶瓷材料、材料成型装备等方面的研究。sxwang@stu.edu.cn   
作者简介:  刘庆,汕头大学工学院硕士研究生,在王双喜教授的指导下进行研究。目前主要研究领域为氧化锆陶瓷材料。
引用本文:    
刘庆, 欧阳雪琼, 刘文财, 吕洋, 王双喜. 流延工艺制备氧化锆燃料电池薄膜的研究进展[J]. 材料导报, 2025, 39(10): 24020149-10.
LIU Qing, OUYANG Xueqiong, LIU Wencai, LYU Yang, WANG Shuangxi. Advances in the Production of Zirconia Thin Films for SOFC by Tape Casting. Materials Reports, 2025, 39(10): 24020149-10.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24020149  或          https://www.mater-rep.com/CN/Y2025/V39/I10/24020149
1 Peng J, Huang J, Wu X L, et al. Journal of Power Sources, 2021, 505, 230058.
2 Yang S, Wang G, Liu Z, et al. International Journal of Hydrogen Energy, 2024, 53, 1155.
3 Haseltalab A, van Biert L, Sapra H, et al. Energy Conversion and Ma-nagement, 2021, 245, 114625.
4 Boldrin P, Brandon N P. Nature Catalysis, 2019, 2(7), 571.
5 Raza T, Yang J, Wang R, et al. Chemical Engineering Journal, 2022, 444, 136533.
6 Höber M, Königshofer B, Boškoski P, et al. Journal of Power Sources, 2023, 585, 233635.
7 Geofrey S M, Daud L S. Materials Science and Engineering B, 2023, 292, 116415.
8 Hernández V I, García-Gutiérrez D I, Aguilar-Garib J A, et al. Ceramics International, 2021, 47(1), 310.
9 Altan T, Timurkutluk C, Timurkutluk B. Journal of Power Sources, 2022, 532, 231369.
10 Li D, Sun G L, Ouyang X Q, et al. Applied Surface Science, 2023, 622, 156963.
11 Jin Y K. Study on the surface modification of nano-alumina powders and the fabrication of micro-nano multi-scale ceramic substrate. Master’s Thesis, Shantou University, China, 2021 (in Chinese)
靳艺凯. 纳米氧化铝粉体的表面改性及微纳跨尺度陶瓷基板的制备. 硕士学位论文, 汕头大学, 2021.
12 Liu M F, Liu Y. International Journal of Hydrogen Energy, 2019, 44(31), 16976.
13 Shen C T, Lee K R, Hsieh Y P, et al. International Journal of Hydrogen Energy, 2019, 44(56), 29426.
14 Silva G C T, Muccillo E N S. Solid State Ionics, 2009, 180(11-13), 835.
15 Chasta G, Dhaka M S. Surface and Coatings Technology, 2023, 458, 129318.
16 Yu F Y, Xiao J, Lei L B, et al. Solid State Ionics, 2016, 289, 28.
17 Lee J G, Jeon O S, Ryu K H, et al. Ceramics International, 2015, 41(6), 7982.
18 Guo F W, Xiao P. Journal of the European Ceramic Society, 2012, 32(16), 4157.
19 Mehranjani A S, Cumming D J, Sinclair D C, et al. Journal of the European Ceramic Society, 2017, 37(13), 3981.
20 Flegler A J, Burye T E, Yang Q, et al. Ceramics International, 2014, 40(10), 16323.
21 Lei L, Bai Y, Liu J. Journal of Power Sources, 2014, 248, 1312.
22 Alizadeh S M, Mohebbi H, Golmohammad M, et al. Journal of Alloys and Compounds, 2023, 938, 168553.
23 Hbaieb K. Ceramics International, 2012, 38(5), 4159.
24 Mirzaei A, Afzali M, Malek K A, et al. Materials Chemistry and Physics, 2024, 315, 129051.
25 Capdevila X G, Folch J, Calleja A, et al. Ceramics International, 2009, 35(3), 1219.
26 Wang W, Liu Z, Zhang Y, et al. Journal of Alloys and Compounds, 2019, 794, 294.
27 Zhou X, Sun K, Gao J, et al. Journal of Power Sources, 2009, 191(2), 528.
28 Albano M P, Garrido L B. Materials Science and Engineering A, 2006, 420(1-2), 171.
29 Albano M P, Garrido L B. Ceramics International, 2008, 34(5), 1279.
30 Michalek M, Blugan G, Graule T, et al. Powder Technology, 2015, 274, 276.
31 Baquero T, Escobar J, Frade J, et al. Ceramics International, 2013, 39(7), 8279.
32 Snijkers F, De Wilde A, Mullens S, et al. Journal of the European Ceramic Society, 2004, 24(6), 1107.
33 Nayak S, Singh B P, Besra L, et al. Journal of the American Ceramic Society, 2011, 94(11), 3742.
34 Wu Y, Qin P, Cao S, et al. Materials Today Communications, 2024, 39, 108686.
35 Curi M O, Ferraz H C, Furtado J G M, et al. Ceramics International, 2015, 41(5, Part A), 6141.
36 Maiti A K, Rajender B. Materials Science and Engineering A, 2002, 333(1), 35.
37 Yaghtin M, Yaghtin A, Tang Z, et al. Ceramics International, 2020, 46(17), 26991.
38 Jabbari M, Bulatova R, Hattel J H, et al. Materials Science and Technology, 2013, 29(9), 1080.
39 Bulatova R, Gudik-Sørensen M, Negra M D, et al. Ceramics International, 2016, 42(4), 4663.
40 Jabbari M, Hattel J. Materials Science and Technology, 2014, 30(3), 283.
41 Rahmawati F, Zuhrini N, Nugrahaningtyas K D, et al. Journal of Materials Research and Technology, 2019, 8(5), 4425.
42 Jabbari M, Esfahani M N. Chemical Engineering Research and Design, 2019, 152, 269.
43 Hussain A, Ul Hassan M, Song R H, et al. Ceramics International, 2023, 49(18), 30452.
44 Albano M P, Garrido L B. Materials Science and Engineering A, 2007, 452-453, 121.
45 Panthi D, Hedayat N, Du Y, et al. Journey of Advanced Ceramics, 2018, 7(4), 325.
46 Khor K A, Yu L G, Chan S H, et al. Journal of the European Ceramic Society, 2003, 23(11), 1855.
47 Cologna M, Prette A L G, Raj R. Journal of the American Ceramic Society, 2011, 94(2), 316.
48 Guo J, Floyd R, Lowum S, et al. Annual Review of Materials Research, 2019, 49, 275.
49 Mukasyan A S, Rogachev A S, Moskovskikh D O, et al. Ceramics International, 2022, 48(3), 2988.
50 Peng Z, Luo X, Xie Z, et al. Ceramics International, 2020, 46(3), 2585.
51 Rajeswari K, Suresh M B, Chakravarty D, et al. International Journal of Hydrogen Energy, 2012, 37(1), 511.
52 Flaureau A, Weibel A, Chevallier G, et al. Journal of the European Ceramic Society, 2021, 41(6), 3581.
53 Bhandari S, Mishra T P, Bram M, et al. Ceramics International, 2022, 48(22), 33236.
54 Biesuz M, Sglavo V M. Journal of the European Ceramic Society, 2019, 39(2), 115.
55 Cologna M, Rashkova B, Raj R. Journal of the American Ceramic Society, 2010, 93(11), 3556.
56 Raj R, Cologna M, Francis J S. Journal of the American Ceramic Society, 2011, 94(7), 1941.
57 Muccillo R, Kleitz M, Muccillo E N. Journal of the European Ceramic Society, 2011, 31(8), 1517.
58 Mohebbi H, Mirkazemi S M. Ceramics International, 2021, 47(14), 20220.
59 Vendrell X, Yadav D, Raj R, et al. Journal of the European Ceramic Society, 2019, 39(4), 1352.
60 Lewin D, Menze K H, Michiels I, et al. Journal of the European Ceramic Society, 2023, 43(4), 1633.
61 Ndayishimiye A, Bang S H, Spiers C J, et al. Journal of the European Ceramic Society, 2023, 43(1), 1.
62 Galotta A, Sglavo V M. Journal of the European Ceramic Society, 2021, 41(16), 1.
63 Guo H, Bayer T J, Guo J, et al. Journal of the European Ceramic Society, 2017, 37(5), 2303.
64 Lai Q, Chen J, Chang F, et al. Ceramics International, 2023, 49(9, Part A), 14744.
65 Timurkutluk B, Dokuyucu S. Ceramics International, 2018, 44(14), 17399.
66 Heidari D, Javadpour S, Chan S H. Energy Conversion and Management, 2017, 150, 567.
67 Park B K, Barnett S A. Journal of Materials Chemistry A, 2020, 8(23), 11626.
68 Tan K, Yan X M, Tian F Y, et al. Journal of the Chinese Ceramic Society, 2022, 50(6), 1661 (in Chinese).
谭楷, 颜晓敏, 田丰源, 等. 硅酸盐学报, 2022, 50(6), 1661.
69 Lee Y H, Chang I, Cho G Y, et al. International Journal of Precision Engineering and Manufacturing-Green Technology, 2018, 5, 441.
70 Ghatee M, Shariat M H, Irvine J T S. Solid State Ionics, 2009, 180(1), 57.
71 Suciu C, Tikkanen H, Wærnhus I, et al. Ceramics International, 2012, 38(1), 357.
72 Wang Z, Huang X, Lv Z, et al. Ceramics International, 2015, 41(3B), 4410.
73 Jiang Z, Snowdon A L, Siddiq A, et al. Ceramics International, 2022, 48(22), 32844.
74 Liu R Z, Zhou F, Wang Q C, et al. Materials Reports, 2021, 35(Z1), 29 (in Chinese).
刘润泽, 周芬, 王青春, 等. 材料导报, 2021, 35(Z1), 29.
75 Matsuda M, Hosomi T, Murata K, et al. Journal of Power Sources, 2007, 165(1), 102.
76 Agarkova E A, Burmistrov I N, Agarkov D A, et al. Materials Letters, 2021, 283, 128752.
77 Nie J, Zheng D, Ganesh K S, et al. Ceramics International, 2021, 47(3), 3462.
78 Gao J, Liu Z, Akbar M, et al. Ceramics International, 2023, 49(4), 5637.
[1] 徐桂培, 刘浩, 赖洁文, 卢毅锋, 黄辉, 易宗琳, 邸会芳, 王振兵, 苏方远, 陈成猛. 高电压双电层超级电容器电解质的研究进展[J]. 材料导报, 2025, 39(9): 24030012-8.
[2] 张文霞, 贾岩, 程海峰, 刘东青. 全固态电致变色器件研究进展[J]. 材料导报, 2025, 39(1): 24100119-11.
[3] 王丕, 宋琛, 董东东, 曾德长, 刘太楷, 文魁, 毛杰, 刘敏. 多孔Fe24Cr金属支撑体厚度对SOFC性能的影响[J]. 材料导报, 2025, 39(1): 23110193-7.
[4] 井文昌, 张志鸿, 刘香琛, 吴云翼, 李宝让. 新型液态金属电池材料体系及其相关技术的研究与进展[J]. 材料导报, 2025, 39(1): 23090098-17.
[5] 钮政, 罗希, 徐能能, 陈刚, 乔锦丽. 聚乙烯醇基凝胶电解质的制备及在储能器件中的应用[J]. 材料导报, 2024, 38(8): 23040146-11.
[6] 魏一帆, 夏会聪, 张佳楠. 钠离子存储器件中界面效应作用机制研究[J]. 材料导报, 2024, 38(8): 23120085-9.
[7] 王海萍, 陈必华, 陶益杰, 黄凯兵, 张世国. 聚醚接枝丙烯酸树脂基凝胶聚合物电解质的制备及在电致变色器件中的应用[J]. 材料导报, 2024, 38(7): 22090034-5.
[8] 刘守一, 望宇皓, 刘莉莉, 欧阳云祥, 李娜, 胡朝霞, 陈守文. 石墨相氮化碳在聚合物电解质膜中的研究进展[J]. 材料导报, 2024, 38(6): 23030250-7.
[9] 吴强, 商伶俐, 李学锋, 张高文, 黄以万, 龙世军. 多糖聚电解质静电组装高强度水凝胶膜的组织粘接抑菌性[J]. 材料导报, 2024, 38(18): 23030284-6.
[10] 生健平, 喻明富, 李洁, 孙红. 基于V2C催化剂的混合电解质锂空气电池催化机理研究[J]. 材料导报, 2024, 38(10): 23030161-7.
[11] 杨瑞强, 汪永清, 常启兵, 周健儿. 烧结助剂MgO-Al2O3-SiO2-ZrO2提高管式支撑体的耐碱腐蚀性能研究[J]. 材料导报, 2023, 37(S1): 23040042-9.
[12] 罗重阳, 李宇杰, 王丹琴, 刘双科, 陈宇方, 郑春满. 改性电解液促进均匀锂沉积的研究进展[J]. 材料导报, 2023, 37(6): 21070209-11.
[13] 张家庆, 张达, 陈昆峰, 薛冬峰, 梁风. 稀土改性锂基氧化物固态电解质研究现状与展望[J]. 材料导报, 2023, 37(3): 22110300-9.
[14] 赵浩成, 刘翠荣, 姚志广, 张莹, 张志超, 刘茜秀. 应用于静电键合的透光聚氨酯弹性体阴极材料的研究[J]. 材料导报, 2023, 37(22): 22060160-6.
[15] 陈斐, RannalterLeana Ziwen, 宋尚斌, 曹诗雨, 沈强. 氧化物固体电解质的三维框架结构设计及在全固态锂离子电池中的应用[J]. 材料导报, 2023, 37(19): 22020093-15.
[1] JIN Qinglin, WANG Yang, CAO Lei, SONG Qunling. Effect of Nitriding in Mushy Zone on the Nitrogen Content and Solidification Transformation of Cr10Mn9Ni0.7 Alloy[J]. Materials Reports, 2018, 32(4): 579 -583 .
[2] WANG Shengmin, ZHAO Xiaojun, HE Mingyi. Research Status and Development of Mechanical Plating[J]. Materials Reports, 2017, 31(5): 117 -122 .
[3] HE Yuandong, SUN Changzhen, MAO Weiguo, MAO Yiqi, ZHANG Honglong, CHEN Yanfei, PEI Yongmao, FANG Daining. Measurement of Transverse Piezoelectric Coefficients of Pb(Zr0.52Ti0.48)O3 Thin Films by a Mechano-electrical Multiphysics Coupling, Bulge Test Method[J]. Materials Reports, 2017, 31(15): 139 -144 .
[4] TAO Lei, ZHENG Yunwu,DI Mingwei, ZHANG Yanhua, ZHENG Zhifeng. Preparation of Porous Carbon Nanofiber from Liquid Phenolic Resin and Its Characterization[J]. Materials Reports, 2017, 31(10): 101 -106 .
[5] SU Lan, ZHANG Chubo, WANG Zhen, MI Zhenli. Finite Element Simulation of Electromagnetic Induction Heating in Hot Metal Gas Forming[J]. Materials Reports, 2017, 31(24): 182 -177 .
[6] QI Yaping, LUO Faliang, WANG Kezhi, SHEN Zhiyuan, WU Xuejian, WANG Diran. Effect of TMC-300 on the Performance of PLLA/PPC Alloy[J]. Materials Reports, 2018, 32(10): 1672 -1677 .
[7] LIU Huan, HUA Zhongsheng, HE Jiwen, TANG Zetao, ZHANG Weiwei, LYU Huihong. Indium Recovery from Waste Indium Tin Oxide: a Technological Review[J]. Materials Reports, 2018, 32(11): 1916 -1923 .
[8] DU Min, SONG Dian, XIE Ling, ZHOU Yuxiang, LI Desheng, ZHU Jixin. Electrospinning in Rechargeable Ion Batteries for High Efficient Energy Storage[J]. Materials Reports, 2018, 32(19): 3281 -3294 .
[9] LIU Xiao, XU Qian, LAI Guanghong, GUAN Jianan, XIA Chunlei, WANG Ziming, CUI Suping. Application Performances and Mechanism of Polycarboxylic Acid in Different Comb-bonded Structures in High-performance Concrete[J]. Materials Reports, 2018, 32(22): 4011 -4015 .
[10] ZHANG Di, YANG Di, XU Cui, ZHOU Riyu, LI Hao, LI Jing, WANG Peng. Study on Mechanism of Highly Effective Adsorption of Bisphenol F by Reduced Graphene Oxide[J]. Materials Reports, 2019, 33(6): 954 -959 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed