Please wait a minute...
材料导报  2024, Vol. 38 Issue (9): 22120166-7    https://doi.org/10.11896/cldb.22120166
  无机非金属及其复合材料 |
磁性多壁碳纳米管的制备及用于类芬顿反应催化降解橙黄Ⅱ
苗青山, 杨璟, 张铁成, 李文鹏, 陕绍云, 苏红莹*
昆明理工大学化学工程学院,昆明 650500
Preparation of Magnetic Multi-walled Carbon Nanotubes as Catalyst for Degradation of Orange Ⅱ by Fenton-like Reaction
MIAO Qingshan, YANG Jing, ZHANG Tiecheng, LI Wenpeng, SHAN Shaoyun, SU Hongying*
Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, China
下载:  全 文 ( PDF ) ( 4823KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了提高非均相类芬顿体系的催化效率,采用原位生长法和直接混合法分别合成了Fe3O4修饰的磁性多壁碳纳米管(Fe3O4-MWCNTs)纳米复合材料,并对其作为类芬顿催化剂降解偶氮染料橙黄Ⅱ的效果进行了研究。通过X射线衍射(XRD)、傅里叶变换红外光谱(FTIR)、透射电镜(TEM)、热重分析(TGA)和磁学性能(VSM)检测对制备的Fe3O4-MWCNTs磁性纳米复合材料的组成、结构、形貌及性能等进行了表征,结果表明:原位生长法获得的Fe3O4-MWCNTs纳米复合材料具有良好的磁学性能,且Fe3O4纳米粒子均匀分布于碳纳米管的表面。降解实验结果表明:在Fe3O4-MWCNTs磁性纳米复合催化剂用量为0.025 g、H2O2用量为555 μL、pH值为2.5、反应温度为25 ℃、橙黄Ⅱ溶液初始浓度为50 mg/L的条件下,6 h后橙黄Ⅱ的去除率达到99.9%。该复合材料也表现出良好的稳定性和可重复使用性,磁分离循环使用四次后对橙黄Ⅱ的去除率仍能保持在97%以上。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
苗青山
杨璟
张铁成
李文鹏
陕绍云
苏红莹
关键词:  类芬顿反应  Fe3O4  多壁碳纳米管  橙黄Ⅱ  降解    
Abstract: In order to enhance the catalyst efficiency of heterogeneous Fenton-like system, Fe3O4-modified multi-walled carbon nanotubes (Fe3O4-MWCNTs) nanocomposites were synthesized by in situ growth and direct mixing methods, respectively. And their effectiveness as Fenton-like catalysts for the degradation of the azo dye orange Ⅱ was studied in this work. The composition, structure, morphology, and properties of the prepared Fe3O4-MWCNTs magnetic nanocomposites were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), thermogravimetric analysis (TGA), and magnetic property detection (VSM). The results show that the Fe3O4-MWCNTs nanocomposites obtained by in situ growth method have better magnetic properties and the Fe3O4 nanoparticles are uniformly distributed on the surface of carbon nanotubes. The degradation experiments indicated that the removal efficiency of orange Ⅱ reached up to 99.9% after 6 h at 25 ℃ under the following conditions: concentration of orange Ⅱ at 50 mg/L, H2O2 dosage was 555 μL, Fe3O4-MWCNTs magnetic nanocomposites dosage was 0.025 g, pH 2.5. The Fe3O4-MWCNTs composite also shows excellent stability and reproducibility, with the removal of orange Ⅱ remaining above 97% after four cycles of magnetic separation.
Key words:  Fenton-like reaction    Fe3O4    multi-walled carbon nanotubes    orange Ⅱ    degradation
出版日期:  2024-05-10      发布日期:  2024-05-13
ZTFLH:  TQ426.64  
基金资助: 云南省基础研究计划项目(202201AT070140);云南省“万人计划”青年拔尖人才专项(YNWR-QNBJ-2019-085)
通讯作者:  * 苏红莹,昆明理工大学化学工程学院副教授、硕士研究生导师。2012年毕业于四川大学国家生物医学材料工程技术研究中心,获高分子化学与物理博士学位。目前主要从事天然高分子的改性及应用、环境响应型水凝胶微/纳米粒子的构建及作为生物材料的应用等方面的研究工作。hongyingsu@kust.edu.cn   
作者简介:  苗青山,2019年7月于潍坊医学院获得工学学士学位。现为昆明理工大学化学工程学院硕士研究生,在苏红莹副教授的指导下进行研究。目前主要研究领域为功能纳米材料。
引用本文:    
苗青山, 杨璟, 张铁成, 李文鹏, 陕绍云, 苏红莹. 磁性多壁碳纳米管的制备及用于类芬顿反应催化降解橙黄Ⅱ[J]. 材料导报, 2024, 38(9): 22120166-7.
MIAO Qingshan, YANG Jing, ZHANG Tiecheng, LI Wenpeng, SHAN Shaoyun, SU Hongying. Preparation of Magnetic Multi-walled Carbon Nanotubes as Catalyst for Degradation of Orange Ⅱ by Fenton-like Reaction. Materials Reports, 2024, 38(9): 22120166-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.22120166  或          https://www.mater-rep.com/CN/Y2024/V38/I9/22120166
1 Lu Yang,Pan Yonghua,Shen Jinjin,et al. China Dyeing and Finishing, 2012, 30(20), 50 (in Chinese).
卢鸯, 潘勇华, 沈金金, 等. 印染, 2012, 30(20), 50.
2 Hashemi S H, Kaykhaii M. Emerging freshwater pollutants, Elsevier, Iran, 2022, pp. 267.
3 Zhang S W, Xu W Q, Zeng M Y, et al. Journal of Materials Chemistry A, 2013, 1, 11691.
4 Martinez-Huitle C, Brillas E. Applied Catalysis B:Environmental, 2009, 87(3-4), 105.
5 Olukanni O D, Osuntoki A A, Gbenle G O, et al. Journal of Hazardous Materials, 2010, 184 (1-3), 290.
6 Wang Y, Wang R T, Lin N P, et al. Chemosphere, 2022, 293,133614.
7 Gogate P R, Pandit A B. Advances in Environmental Research, 2004, 8 (3-4), 501.
8 Soriano-molina P, Sanchez J G, Malato S, et al. Chemical Engineering Journal, 2017, 331, 84.
9 Joseph De Laat, Herve Gallard. Environmental Science and Technology, 1999, 33(16), 2726.
10 Sabrina A B, Leadin S K, Ivan C, et al. New Journal of Chemistry, 2022, 46, 263.
11 Zhang H, Chen S, Zhang H G, et al. Frontiers of Environmental Science and Engineering, 2019, 13, 43.
12 Xiang H, Ren G, Zhong Y J, et al.Nanomaterials, 2021, 11 (2), 330.
13 Wei X R, Zhu N W, Huang X X, et al. Journal of Environmental Ma-nagement, 2020, 260, 110072.
14 Hwa K Y, Ganguly A, Santhan A, et al. ACS Sustainable Chemistry and Engineering, 2022, 10 (3),1298.
15 Shen Huijuan, Han Taikun, Deng Liqiang, et al. Micronanoelectronic Technology, 2022, 59(5),393 (in Chinese)
申惠娟, 韩太坤, 邓锂强, 等.微纳电子技术, 2022, 59(5),393.
16 Mehta D, Thakur N, Nagaiah T C. Materials Advances, 2022, 3,5027.
17 Tang J, Zheng S B, Jiang S X, et al. Rare Metals, 2021, 40, 478.
18 Mallakpour S, Khadem E. Chemical Engineering Joural, 2016, 302, 344.
19 Wang H, Jiang H, Wang S, et al. RSC Advances, 2014, 86(4), 45809.
20 Tan H, Feng W, Ji P. Bioresource Technology, 2012, 115, 172.
21 Deng J, Wen X, Wang Q J M R B. Materials Research Bulletin, 2012, 47, 3369.
22 Wang X, Zhao Z, Qu J, et al. Journal of Physics and Chemistry of So-lids, 2010, 71, 673.
23 Lee P L, Chiu Y K, Sun Y C, et al. Carbon, 2010, 48, 1397.
24 Liu Y, Jiang W, Wang Y, et al. Journal of Magnetism and Magnetic Materials,2009, 321, 408.
25 Zhao S, Asuha S J P T. Powder Technology, 2010, 197, 295.
26 Jiang L, Gao L J C O M. Chemistry of Materials, 2003, 15, 2848.
27 Zhou Lixin, Wei Xiaoqin, Cai Meiqiang et al. Physical Testing and Chemical Analysis(Part B:Chemical Analysis) , 2014, 50(9),1061 (in Chinese).
周丽新, 魏晓琴, 蔡美强, 等.理化检验-化学分册, 2014, 50(9), 1061.
28 Zhou Lixin, Wei Xiaoqin, Cai Meiqiang et al. Physical Testing and Chemical Analysis(Part B:Chemical Analysis) 2014, 50(8), 929 (in Chinese)
周丽新, 魏晓琴, 蔡美强, 等.理化检验-化学分册,2014, 50(8), 929.
29 Liang Xianqing, Liu Wei, Li Bao. Journal of Magnetic Materials and Devices, 2012, 43(2), 18 (in Chinese).
梁先庆, 刘伟, 李苞.磁性材料及器件, 2012, 43(2),18.
30 Hou Xingang, Zhou Xiaomeng, Jiang Lili, et al. Journal of Lanzhou University of Technology, 2016, 42(1), 26 (in Chinese).
侯新刚, 周晓蒙, 姜丽丽, 等. 兰州理工大学学报, 2016, 42(1), 26.
31 Tian X J, Liu Y F,Chi W D, et al. Water, Air, and Soil Pollution, 2017, 228, 297.
32 Wang Dong, Zhang Yaming, Liu Fuyong, et al. Chemical Reagents, 2020, 42(3), 232 (in Chinese).
王栋, 张雅明, 刘富永,等.化学试剂, 2020, 42(3), 232.
33 Dong W, Li W B, Wang G H, et al. Science of the Total Environment, 2017, 574, 1326.
34 Cleveland V, Bingham J P, Eunsung K. Separation and Purification Technology, 2014, 133, 388.
35 De Laat J, Le Truong G. Applied Catalysis B: Environmental, 2006, 66(1-2),137.
[1] 张婷, 吴翠玲, 籍冰晗, 韩梦瑶, 杜雪岩. 再生纤维素基三明治结构复合薄膜的电磁屏蔽性能[J]. 材料导报, 2025, 39(2): 23100181-6.
[2] 李月霞, 吴梦, 纪子影, 刘璐, 应国兵, 徐鹏飞. Ti3C2Tx/Fe3O4纳米复合材料的吸波和电磁屏蔽性能与机制[J]. 材料导报, 2024, 38(9): 23020143-7.
[3] 杨羽轩, 杜桂芳, 柳召刚, 赵金钢, 陈明光, 胡艳宏, 吴锦绣, 冯福山. 2-氨基烟酸镧铈对PVC热稳定性的影响[J]. 材料导报, 2024, 38(7): 22060141-8.
[4] 宋江燕, 翟涛, 温倩, 周融融, 杨为森, 简绍菊, 潘文斌, 胡家朋. 磁性Ce-La-MOFs@Fe3O4的除氟性能[J]. 材料导报, 2024, 38(4): 22080185-7.
[5] 齐亚兵, 贾宏磊. 活化亚硫酸(氢)盐降解有机污染物的研究进展[J]. 材料导报, 2024, 38(3): 22060274-13.
[6] 朱艳, 刘海龙, 贾仕奎, 李云峰, 首浩. Fe3O4/g-C3N4复合异质结的构建及紫外光降解罗丹明B[J]. 材料导报, 2024, 38(23): 23080020-7.
[7] 曹晓君, 刘美辰, 杨康, 马义明, 王俊杰, 黎军顽. 可降解铸态Zn-Cu-Sr合金的组织与性能[J]. 材料导报, 2024, 38(18): 23060210-7.
[8] 罗宁, 高凤雨, 陈都, 张辰骁, 段二红, 赵顺征, 易红宏, 唐晓龙. CeMn复合氧化物的制备及氯苯催化氧化性能[J]. 材料导报, 2024, 38(16): 23050133-9.
[9] 刘洋, 马占营, 李午戊, 郭乃妮, 侯磊, 樊星宇, 王樱嫒, 王尧宇. 多羧酸镍配合物催化降解罗丹明B的活性与机理[J]. 材料导报, 2024, 38(16): 24030040-6.
[10] 蔡心杰, 徐亦冬, 王玉全, 武金婷. 采用持久发光材料为内部光源的光催化复合材料研究进展[J]. 材料导报, 2024, 38(15): 23030157-10.
[11] 赵强, 李淑英, 郭智楠, 许琳, 赵一博, 吕靖, 尚建鹏, 郭永, 王俊丽. 氧化亚铜基光催化剂的制备及降解性能研究进展[J]. 材料导报, 2024, 38(14): 22110145-15.
[12] 吴鹏飞, 崔华帅, 朱金唐, 史贤宁, 崔宁, 李杰, 黄庆. 暂堵剂用聚乳酸/聚乙醇酸复合纤维的制备及降解性能研究[J]. 材料导报, 2024, 38(13): 22120143-6.
[13] 钱红梅, 洪铤锴. N-S共掺杂CN/NS-TiO2纳米复合材料的制备及可见光催化性能[J]. 材料导报, 2023, 37(S1): 22110216-7.
[14] 刘继成, 杨仁凯, 陈贵生, 孙思, 韩晓宇, 田洁, 李晓林. 改性PbO2电极电化学催化裂解的稳定性研究[J]. 材料导报, 2023, 37(8): 21080035-6.
[15] 赵艳艳, 范敬煜, 魏景, 施欢贤. 碳量子点/Bi2WO6复合材料高效光催化降解RhB和杀灭大肠杆菌及其催化活性增强机理研究[J]. 材料导报, 2023, 37(5): 21060126-8.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed