Please wait a minute...
材料导报  2024, Vol. 38 Issue (8): 22090104-11    https://doi.org/10.11896/cldb.22090104
  无机非金属及其复合材料 |
3D打印隔热材料研究进展
桂岩, 赵爽, 杨自春*
海军工程大学动力工程学院, 武汉 430032
Research Progress of 3D Printing Thermal Insulation Materials
GUI Yan, ZHAO Shuang, YANG Zichun*
College of Power Engineering, Naval University of Engineering, Wuhan 430032, China
下载:  全 文 ( PDF ) ( 83197KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 3D打印技术能够实现面向性能的设计以及非常规结构的制造,其在隔热领域的应用可以使材料具有更加精细、可控、定制化的结构与功能。当前,3D打印隔热材料技术仍处于快速迭代期,打印材料、结构设计和制造工艺等技术瓶颈尚待突破。本文对3D打印隔热材料的现状进行了综述,简要分析了在隔热材料制造方面较有前景的3D打印工艺,对比了各工艺的优缺点以及适用的材料类型,着重讨论了3D打印陶瓷、发泡混凝土、泡沫塑料和气凝胶材料在隔热领域的研究进展,最后总结了目前面临的技术挑战和未来的主要发展方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
桂岩
赵爽
杨自春
关键词:  隔热材料  3D打印  气凝胶  陶瓷  发泡混凝土  泡沫塑料    
Abstract: 3D printing technology enables the performance-oriented design and fabrication of unusual structures. Its use in thermal insulation can result in materials with a finer, more controllable, and customized structure and function. At the moment, 3D printing insulation material technology is still in its early stages, with technical bottlenecks such as printing materials, structural design, and manufacturing processes still to be overcome. This paper reviews the current state of 3D printing thermal insulation materials and provides a brief overview of the promising 3D printing process for the production of thermal insulation materials. The advantages and disadvantages of these printing processes, as well as the material requirements, are compared. Furthermore, the progress of research on 3D printing ceramics, foamed concrete, foamed plastics, and aerogel materials in the field of thermal insulation is thoroughly discussed. This paper concludes with the current technical challenges and the main future development directions.
Key words:  thermal insulation material    3D printing    aerogel    ceramic    foamed concrete    foamed plastic
出版日期:  2024-04-25      发布日期:  2024-04-28
ZTFLH:  TB34  
  TB35  
  TQ427  
基金资助: 国家自然科学基金(51802347);湖北省自然科学基金(2022CFB939)
通讯作者:  *杨自春,海军工程大学动力工程学院教授、博士研究生导师。1989年7月海军工程大学轮机专业本科毕业,1996年9月取得华中科技大学固体力学专业博士学位。目前主要从事舰船新材料等方面的研究工作。获国家科技进步奖二等奖1项,军队科技进步奖一等奖3项、二等奖2项,先后入选教育部“新世纪优秀人才支持计划”“新世纪百千万人才工程”国家级人选,军队高层次科技创新人才工程学科领军人才培养对象等。发表论文100余篇,包括Microporous and Mesoporous Materials、Journal of the European Ceramic Society等。zichunyang12a@126.com   
作者简介:  桂岩,2017年6月于海军工程大学获得工学学士学位。现为海军工程大学动力工程学院硕士研究生,在杨自春教授的指导下进行研究。目前主要研究领域为舰船新型隔热材料。
引用本文:    
桂岩, 赵爽, 杨自春. 3D打印隔热材料研究进展[J]. 材料导报, 2024, 38(8): 22090104-11.
GUI Yan, ZHAO Shuang, YANG Zichun. Research Progress of 3D Printing Thermal Insulation Materials. Materials Reports, 2024, 38(8): 22090104-11.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.22090104  或          https://www.mater-rep.com/CN/Y2024/V38/I8/22090104
1 Tychanicz-Kwiecień M, Wilk J, Gil P. Journal of Thermophysics and Heat Transfer, 2019, 33(1), 271.
2 Tang G H, Bi C, Zhao Y, et al. Energy, 2015, 90, 701.
3 Shahrubudin N, Lee T C, Ramlan R. Procedia Manufacturing, 2019, 35, 1286.
4 Brinckmann S A, Patra N, Yao J, et al. Advanced Engineering Mate-rials, 2018, 20(11), 1800593.
5 Masuda H, Ohta Y, Kitayama M. Journal of Materials Science and Chemical Engineering, 2019, 7(2), 1.
6 Chen Z, Li J, Liu C, et al. Ceramics International, 2019, 45(9), 11549.
7 Quan H, Zhang T, Xu H, et al. Bioactive Materials, 2020, 5(1), 110.
8 Huang Z, Tsui G C P, Deng Y, et al. Nanotechnology Reviews, 2020, 9(1), 1118.
9 Rasaki S A, Xiong D, Xiong S, et al. Journal of Advanced Ceramics, 2021, 10(3), 442.
10 Feng J, Su B L, Xia H, et al. Chemical Society Reviews, 2021, 50(6), 3842.
11 Ma F, Zhang H, Hon K K B, et al. Journal of Cleaner Production, 2018, 199, 529.
12 Yang M C, Luo H, Song J J, et al. Journal of Chongqing University of Technology( Natural Science), 2022, 36(3), 112(in Chinese).
杨美晨, 罗豪, 宋晶晶, 等. 重庆理工大学学报(自然科学), 2022, 36(3), 112.
13 Zhu W, Yan C, Shi Y, et al. Materials & Design, 2015, 82, 37.
14 Liu S S, Li M, Wu J M, et al. Ceramics International, 2020, 46(4), 4240.
15 Sun X, Zeng T, Zhou Y, et al. Ceramics International, 2020, 46(14), 22797.
16 Stansbury J W, Idacavage M J. Dental Materials, 2016, 32(1), 54.
17 Gorny B, Niendorf T, Lackmann J, et al. Materials Science and Engineering: A, 2011, 528(27), 7962.
18 Lee S T, Park C B. Foam extrusion: principles and practice, CRC Press, UK, 2014, pp. 39.
19 Rafiee M, Farahani R D, Therriault D. Advanced Science, 2020, 7(12), 1902307.
20 Chatté G, Comtet J, Niguès A, et al. Soft Matter, 2018, 14(6), 879.
21 Wang L, Chen S, Shu T, et al. ChemSusChem, 2020, 13(6), 1330.
22 Tian Z, Yang Y, Wang Y, et al. Materials Letters, 2019, 236, 144.
23 Chen H, Wang X, Xue F, et al. Journal of the European Ceramic Society, 2018, 38(16), 5294.
24 Komissarenko D A, Sokolov P S, Evstigneeva A D, et al. Journal of the European Ceramic Society, 2021, 41(1), 684.
25 Shuai X, Zeng Y, Li P, et al. Journal of Materials Science, 2020, 55(16), 6771.
26 Schlacher J, Hofer A K, Geier S, et al. Open Ceramics, 2021, 5, 100082.
27 Chen A N, Gao F, Li M, et al. Ceramics International, 2019, 45(12), 15538.
28 He C, Ma C, Li X, et al. Additive Manufacturing, 2021, 46, 102111.
29 Ohji T, Fukushima M. International Materials Reviews, 2012, 57(2), 115.
30 Yang G, Guan R, Zhen H, et al. ACS Applied Materials & Interfaces, 2022, 14(8), 10998.
31 Raj A, Sathyan D, Mini K M. Construction and Building Materials, 2019, 221, 787.
32 Cho S, Kruger J, Rooyen A, et al. Rheology and Processing of Construction Materials, 2019, 23, 373.
33 Falliano D, Sciarrone A, Domenico D D, et al. In: 7th International Conference on Euro Asia Civil Engineering Forum. Stuttgart, 2019, pp. 012018.
34 Markin V, Krause M, Otto J, et al. Journal of Building Engineering, 2021, 43, 102870.
35 Zhang Y, Zhang Y, She W, et al. Construction and Building Materials, 2019, 201, 278.
36 Salet T A M, Ahmed Z Y, Bos F P, et al. Virtual and Physical Prototyping, 2018, 13(3), 222.
37 Naboni R, Breseghello L, Kunic A. Additive Manufacturing, 2019, 27, 305.
38 Suh K W. Kirk-othmer encyclopedia of chemical technology, John Wiley & Sons Inc, USA, 2000, pp.1.
39 Furet B, Poullain P, Garnier S. Additive Manufacturing, 2019, 28, 58.
40 Molodin V V, Vasenkov E V, Timin P L. Materials Science Forum, 2020, 992, 194.
41 Bahar A, Belhabib S, Guessasma S, et al. Energies, 2022, 15(10), 3686.
42 Bedarf P, Dutto A, Zanini M, et al. Automation in Construction, 2021, 130, 103861.
43 Shi C X, Zhang S C, Jiang Y G, et al. Rale Metal Materials and Engineering, 2016, 45(S1), 210(in Chinese).
师春晓, 张寿春, 姜勇刚, 等. 稀有金属材料与工程, 2016, 45(S1), 210.
44 Zhao S, Siqueira G, Drdova S, et al. Nature, 2020, 584(7821), 387.
45 Wang L, Feng J, Luo Y, et al. ACS Applied Materials & Interfaces, 2021, 13(34), 40964.
46 Maleki H, Montes S, Hayati-Roodbari N, et al. ACS Applied Materials & Interfaces, 2018, 10(26), 22718.
47 Farrell E S, Ganonyan N, Cooperstein I, et al. Applied Materials Today, 2021, 24, 101083.
48 Shah M A, Lee D G, Lee B Y, et al. IEEE Access, 2021, 9, 140079.
49 Koo J, Kim J W, Kim M, et al. International Journal of Precision Engineering and Manufacturing-Green Technology, 2021, 8(2), 445.
50 Hanzawa Y, Hatori H, Yoshizawa N, et al. Carbon, 2002, 40(4), 575.
51 Zhang Q, Zhang F, Medarametla S P, et al. Small, 2016, 12(13), 1702.
52 Jiang Y, Xu Z, Huang T, et al. Advanced Functional Materials, 2018, 28(16), 1707024.
53 Hensleigh R M, Cui H, Oakdale J S, et al. Materials Horizons, 2018, 5(6), 1035.
54 Hu X, Xu W, Zhou L, et al. Advanced Materials, 2017, 29(5), 1604031.
55 Jian H, Wang Y, Li W, et al. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 629, 127440.
56 Masud A, Zhou C, Aich N. Environmental Science: Nano, 2021, 8(2), 399.
57 Guo B, Liang G, Yu S, et al. Energy Storage Materials, 2021, 39, 146.
58 Guo H, Hua T, Qin J, et al. Advanced Materials Technologies, 2022, 7(9), 2101699.
59 Wang F, Yang Z, Hu X, et al. Smart Materials and Structures, 2022, 31(4), 045002.
60 Guo P, Su L, Peng K, et al. ACS nano, 2022, 16(4), 6625.
61 Tong Z, Yan B, Zhang B, et al. Ceramics International, 2022, 48(4), 5468.
62 Ren S, Liu K, Wang K, et al. Journal of the European Ceramic Society, 2021, 41(9), 4710.
63 Niu T, Zhou B, Zhang Z, et al. Nanomaterials, 2020, 10(12), 2527.
64 Wang W, Zhao Y, Yan W, et al. Journal of Porous Materials, 2021, 28(3), 703.
65 Sroog C E. Progress in Polymer Science, 1991, 16(4), 561.
66 Krall E A, Mettry M, Fears T M. Formulation of PI aerogels with 3-D printing applications. Lawrence Livermore National Lab, US, 2022.
67 Feng C, Yu S S. Polymers, 2021, 13(21), 3614.
68 Yang J, Wang H, Zhou B, et al. Langmuir, 2021, 37(6), 2129.
69 Ma G, Salman N M, Wang L, et al. Construction and Building Mate-rials, 2020, 244, 118305.
70 Shahzad Q, Wang X, Wang W, et al. Construction and Building Mate-rials, 2020, 259, 119854.
71 Ma G, Ruhan A, Xie P, et al. Construction and Building Materials, 2022, 323, 126551.
72 Kwalramani M A, Syed Z I. International Journal of Integrated Enginee-ring, 2018, 10(2), 98.
73 Novak J, Kohoutkova A. Fire Safety Journal, 2018, 95, 66.
74 Joo P, Yao Y, Teo N, et al. Additive Manufacturing, 2021, 46, 102059.
[1] 蒋曜年, 刘欢, 钟镇涛, 何泽乾, 毛卫国, 戴翠英, 张有为, 刘平桂. SiCN@Fe复合吸波涂层高温原位拉伸测试分析[J]. 材料导报, 2025, 39(3): 23050156-5.
[2] 张泽疆, 李新梅, 朱春金, 李航, 杨定力. 纳米TiB2对CoCrFeNiSi高熵合金涂层耐磨与耐蚀性能的影响[J]. 材料导报, 2025, 39(3): 23090210-9.
[3] 张晓辉, 张哲汇, 张效华, 马帅, 岳振星. Ba5[Nb1-x(Al1/3Mo2/3)x]4O15陶瓷的结构和微波介电性能[J]. 材料导报, 2025, 39(2): 23110273-6.
[4] 冯妍, 葛淑慧, 隗立颖, 闫建华. 3D打印无机非金属材料增强柔性器件的研究进展[J]. 材料导报, 2025, 39(1): 23100077-12.
[5] 焦纪强, 蒙峻, 谢文君, 刘建龙, 魏宁斐, 罗成, 郭方准, 王润成. 超高真空环境下TC4钛合金和ZrO2陶瓷的出气性能研究[J]. 材料导报, 2025, 39(1): 23090126-5.
[6] 刘超, 蒙毅升, 武怡文, 刘化威. 3D打印再生砂浆早期流变性能及结构经时演化研究[J]. 材料导报, 2024, 38(9): 22100157-8.
[7] 郑思铭, 李蔚, 杨函瑞, 陈松, 魏取福. 3D打印聚乳酸的改性研究与应用进展[J]. 材料导报, 2024, 38(8): 22100107-10.
[8] 吴思远, 单忠德, 陈恳, 刘丰, 刘晓军, 严春晖. 3D打印连续纤维增强树脂T型梁的弯曲性能[J]. 材料导报, 2024, 38(7): 22090150-7.
[9] 叶登建, 代波. 放电等离子烧结Bi、Ce掺杂钇铁石榴石陶瓷的微观结构与磁性能[J]. 材料导报, 2024, 38(4): 22070054-5.
[10] 张昊, 黄宗玥, 张妍彬, 魏剑. (Si0.2Ti0.2Nb0.2Ta0.2V0.2)C高熵陶瓷的低温制备及吸波性能[J]. 材料导报, 2024, 38(3): 22050232-6.
[11] 张倩玮, 陈意高, 崔红, 吴小军. SiC-ZrC复相超高温陶瓷改性C/C复合材料的研究进展[J]. 材料导报, 2024, 38(3): 22060154-10.
[12] 马昕, 刘海韬, 姜如, 孙逊. He-Hutchinson模型在连续陶瓷纤维增韧陶瓷基复合材料研究中的应用[J]. 材料导报, 2024, 38(3): 22100252-7.
[13] 赵建江, 陈云敏, 韦华. ZrO2(AlN)/h-BN复合陶瓷性能研究及超重力凝固坩埚研制[J]. 材料导报, 2024, 38(21): 23080202-6.
[14] 唐振中, 贾鲁涛, 林永权, 吴捷, 张亚梅. 钨尾矿粉对水泥基3D打印混凝土流变、水化及力学性能的影响[J]. 材料导报, 2024, 38(21): 23060169-6.
[15] 钱郑宇, 严冬, 恽迪. 核燃料裂变气体行为研究进展[J]. 材料导报, 2024, 38(2): 22090311-10.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed