Please wait a minute...
材料导报  2024, Vol. 38 Issue (5): 23080165-9    https://doi.org/10.11896/cldb.23080165
  特种工程材料 |
用于红外和雷达波隐身的水泥基复合材料
马超, 解帅*, 王永超, 冀志江*, 吴子豪, 王静
中国建筑材料科学研究总院有限公司,绿色建筑材料国家重点实验室,北京 100024
Cement-based Composite Materials for Infrared and Radar Wave Stealth
MA Chao, XIE Shuai*, WANG Yongchao, JI Zhijiang*, WU Zihao, WANG Jing
State Key Laboratory of Green Building Materials, China Building Materials Academy Co., Ltd., Beijing 100024, China
下载:  全 文 ( PDF ) ( 43433KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 红外和雷达波隐身主要是通过降低目标的红外辐射信号和雷达回波信号来提高目标的隐蔽性。将相变材料与炭黑封装为相变单元,并将其与膨胀珍珠岩-磁粉/水泥复合材料结合,研制出一种兼具红外和雷达波隐身的双功能水泥基复合材料,对其吸波性能和热性能进行试验与仿真研究。结果表明:炭黑对相变材料相变温度的影响较小,潜热仅降低了约1.9%;500次冷热循环后,相变材料的潜热留存率为78.3%,循环稳定性较好。相变单元和膨胀珍珠岩均可以提高水泥基复合材料的吸波能力,且反射损耗在-5~-15 dB可调。相变单元通过吸收大量热量来降低目标外表面温度,削弱红外辐射。相变材料的加入会增加水泥基复合材料的热导率,但相变材料高储热密度和珍珠岩低热导率的共同作用使得水泥基复合材料的隔热效应更加显著,从而降低目标的红外辐射信号。仿真结果表明:磁损耗仅出现在水泥基体中,相变单元通过电阻损耗来影响水泥基复合材料的吸波性能。热量传递在相变单元处受阻,传导热通量在相变单元边缘处的传输过程出现弯曲。当相变材料相变完成后,热量趋于均匀分布。因此,水泥基复合材料可通过损耗电磁波来降低雷达回波信号,通过相变材料吸收目标的热量来降低红外辐射,从而实现不同复杂环境下建筑材料的红外和雷达波等多波段隐身。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
马超
解帅
王永超
冀志江
吴子豪
王静
关键词:  水泥基复合材料  红外隐身  雷达波隐身  相变材料  有限元法    
Abstract: Infrared and radar wave stealth primarily enhance the concealment of targets by reducing the signals of infrared radiation and radar echoes. A dual functional cement-based composite material that combines infrared and radar wave stealth was developed by encapsulating phase change materials (PCM) with carbon black (CB) as phase change units (PCU) and combining them withexpanded perlite-magnetic particle/cement composite materials. The electromagnetic wave (EMW) absorption and thermal properties of samples were tested and simulated. The experimental results indicate that CB has a minimal impact on the phase change temperature of PCMs, with only a 1.9% decrease in latent heat. After 500 cycles of heating and cooling, the PCMs retain approximately 78.3% of fusion latent heat, demonstrating good cycle stability. The PCU and expanded perlite can enhance the EMW absorbing performance of cement-based materials, with adjustable reflection loss ranging from -5 dB to -15 dB. The PCU reduces the external surface temperature of the sample by absorbing a significant amount of heat, thereby weakening infrared radiation. The addition of PCMs increases the thermal conductivity of cement-based composites. However, the high thermal storage density of PCU and low thermal conductivity of expanded perlite contribute to a more significant insulation effect in cement-based composites, resulting in a reduction of infrared radiation signal. The simulation results express that magnetic loss only occurs in the cement matrix, and the PCU affects the EMW absorbing performance of cement-based materials through resistance loss. The heat conduction is hindered at the PCU, causing the conduction heat flux to bend at the edge of the PCU. After the phase change is complete, the heat distribution tends to be uniform. Therefore, cement-based composite materials can achieve multi-band stealth in different complex environments, such as infrared and radar waves, by dissipating EMW and absorbing target heat, respectively, thereby reducing radar echo signals and infrared radiation.
Key words:  cement-based composite material    infrared stealth    radar wave stealth    phase change material (PCM)    finite element method (FEM)
出版日期:  2024-03-10      发布日期:  2024-03-18
ZTFLH:  TU59  
基金资助: 绿色建筑材料国家重点实验室预研项目(ZA-69)
通讯作者:  *解帅,工学博士,高级工程师。主要从事电磁屏蔽/吸波材料等生态环境功能材料开发及评价技术研究,任中国建筑材料科学研究总院有限公司环境材料与环境保护研究所副所长,兼任CSTM团体标准环境友好与有益健康建筑材料技术委员会秘书长,中国硅酸盐学会青年工作委员会委员。主持/参与国家重点研发计划、战略性国际科技合作、国防军工及其他各类科研课题10余项,获得省部级科技奖励2项,发表论文40余篇(SCI/EI收录35篇),参与出版专著2部,获授权专利8项,主持/参与制定标准9部。 xieshuai@cbma.com.cn
冀志江,工学博士,教授级高工,博士研究生导师,享受国务院政府特殊津贴专家。中国建筑材料科学研究总院绿色建筑材料国家重点实验室学术带头人。兼任中国建筑材料联合会生态环境建材分会副理事长,中国硅酸盐学会房建材料分会秘书长,建材行业环境友好与有益健康建筑材料标准化技术委员会主任委员,中国复合材料学会矿物复合材料专业委员会副主任委员。自2000年以来,主要致力于环境功能建材及其评价技术研究,开拓并发展环境功能建材新兴行业和生态环境建材新学科方向。承担国家自然科学基金、国家重点研发计划、国家科技支撑计划、863计划等各类科研课题20余项,获国家技术发明二等奖1项,建筑材料科学技术奖一等奖、华夏建设奖一等奖、非金属矿科学技术奖一等奖等省部级科技奖励10余项,获授权专利60余项,主持制定国家及行业标准50余项,发表学术论文160余篇,其中SCI/EI收录50余篇,出版专著5部。 jzj1618@126.com   
作者简介:  马超,2018年6月、2021年7月分别于河北大学和中国建筑材料科学研究总院获得理学学士学位和工学硕士学位。现为中国建筑材料科学研究总院博士研究生,在冀志江教授的指导下进行研究。目前主要研究领域为水泥基雷达波隐身和红外隐身材料的制备与仿真。
引用本文:    
马超, 解帅, 王永超, 冀志江, 吴子豪, 王静. 用于红外和雷达波隐身的水泥基复合材料[J]. 材料导报, 2024, 38(5): 23080165-9.
MA Chao, XIE Shuai, WANG Yongchao, JI Zhijiang, WU Zihao, WANG Jing. Cement-based Composite Materials for Infrared and Radar Wave Stealth. Materials Reports, 2024, 38(5): 23080165-9.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.23080165  或          https://www.mater-rep.com/CN/Y2024/V38/I5/23080165
1 Feng L L, Liu Y M, Yao L, et al. Progress in Chemistry, 2021, 33(06), 1044(in Chinese).
冯利利, 刘一曼, 姚琳, 等. 化学进展, 2021, 33(06), 1044.
2 Chai X, Zhu D, Liu Y, et al. Composites Science and Technology, 2021, 216, 109038.
3 Ding C L, Deng X S, Zhao D P, et al. Optical Materials, 2022, 131, 112622.
4 Zeng C, Yuan Y, Xiang B, et al. Sustainable Cities and Society, 2019, 47, 101437.
5 Xu J S, Zhou W C, Luo F, et al. Materials Reports, 2014, 28(09), 46(in Chinese).
徐剑盛, 周万城, 罗发, 等. 材料导报, 2014, 28(09), 46.
6 Xu Y H, Jia L J, Jia X B, et al. Packaging Engineering, 2023, 44(09), 137(in Chinese).
许毅辉, 贾凌杰, 贾贤补, 等. 包装工程, 2023, 44(09), 137.
7 Zhao Y, Shen S, Wang X, et al. Energy and Buildings, 2023, 285, 112933.
8 Wei J, Zhang Y, Li X, et al. Journal of Colloid and Interface Science, 2023, 641, 414.
9 Idris F M, Kaco H, Mohd S M, et al. Mater Today: Proceedings, 2023, 74, 462.
10 Xie S, Ma C, Ji Z, et al. Journal of Building Engineering, 2023, 67, 105925.
11 Dong W, Li W, Guo Y, et al. Construction and Building Materials, 2020, 259, 120399.
12 Ma C, Xie S, Wu Z, et al. Construction and Building Materials, 2023, 393, 132047.
13 Basyigit I B, Dogan H, Genc A, et al. Engineering Science and Techno-logy: an International Journal, 2023, 40, 101344.
14 Min Jeon S, Hongyue J, Jae Song Y, et al. Construction and Building Materials, 2022, 348, 128711.
15 Li H, Chen H, Wei M, et al. Construction and Building Materials, 2023, 364, 129972.
16 Lee H, Choi M K, Kim B J. Journal of Industrial and Engineering Che-mistry, 2023, 125, 38.
17 Liu Z, Ge H, Wu J, et al. Construction and Building Materials, 2017, 151, 575.
18 Stefaniuk D, Sobótka M, Jarczewska K, et al. Cement and Concrete Composites, 2022, 134, 104732.
19 Ma D, Xie Y, Wang L, et al. Chemical Engineering Journal, 2023, 468, 143488.
20 Shi T, Zheng Z, Liu H, et al. Composites Science and Technology, 2022, 217, 109127.
21 Ke W D, Wu X W, Zhang J L. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 627, 127124.
22 Gu J, Wang W, Yu D. Progress in Organic Coatings, 2021, 159, 106439.
23 Xu R, Xia X, Wang W, et al. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 591, 124519.
24 Ren M, Wen X, Gao X, et al. Construction and Building Materials, 2021, 273, 121714.
25 Gesang N M, Liu P, Wang Y J, et al. New Chemical Materials, 2023, 51(12), 15(in Chinese).
格桑尼玛, 刘鹏, 王雅静, 等. 化工新型材料, 2023, 51(12), 15.
26 Ma C, Wu Z, Xie S, et al. Journal of Material Science and Technology Research, 2023, 10, 27.
27 Liu Y, Jiang X S, Lu L. Materials Reports, 2011, 25(S1), 315(in Chinese).
刘燕, 蒋晓曙, 陆雷. 材料导报, 2011, 25(S1), 315.
28 Ma C, Wang J, Wu Y, et al. Journal of Energy Storage, 2022, 46, 103864.
29 Ren M M. Design, properties and compatibility to surroundings of modulated cement-based microwave absorbing materials. Ph. D. Thesis, South China University of Technology, China, 2021(in Chinese).
任蒙蒙. 调制型水泥基吸波材料的设计和性能及其与环境的匹配性研究. 博士学位论文, 华南理工大学, 2021.
30 Liu Y Y, Zhang Z H, Sun R J, et al. China Synthetic Fiber Industry, 2023, 46(02), 55(in Chinese).
刘玉月, 张昭环, 孙润军, 等. 合成纤维工业, 2023, 46(02), 55.
31 Lin K, Xu X Y, Li Q, et al. CIESC Journal, 2021, 72(08), 4425(in Chinese).
林肯, 许肖永, 李强, 等. 化工学报, 2021, 72(08), 4425.
[1] 龙勇, 王宇, 刘天乐, 王亚洲. 相变微胶囊保温砂浆的制备及性能[J]. 材料导报, 2024, 38(9): 22110170-6.
[2] 王艳, 高腾翔, 张少辉, 李文俊, 牛荻涛. 不同形态回收碳纤维水泥基材料的力学与导电性能[J]. 材料导报, 2024, 38(9): 23010043-9.
[3] 龙武剑, 余阳, 何闯, 李雪琪, 熊琛, 冯甘霖. 纳米增强水泥基复合材料抗氯离子迁移及固化性能综述[J]. 材料导报, 2024, 38(7): 22090138-10.
[4] 成鑫磊, 穆锐, 孙涛, 刘元雪, 胡志德, 蒋昊洋. 固液相变材料的封装制备及在建筑领域的研究进展[J]. 材料导报, 2024, 38(5): 23080048-15.
[5] 赵荣, 韩子夜, 吴飞翔, 刘太奇, 李谭秋. 基于十水硫酸钠的个体防护材料的制备及性能[J]. 材料导报, 2024, 38(3): 22090074-5.
[6] 康迎杰, 郭自利, 叶斌斌, 潘鹏. ECC全包裹普通混凝土复合试件的力学性能[J]. 材料导报, 2024, 38(3): 22050021-6.
[7] 王照耀, 梁兴文, 翟天文, 王莹, 吴奎. 钢-PVA混杂纤维增强水泥基复合材料永久模板叠合RC单向板短期刚度计算方法[J]. 材料导报, 2024, 38(3): 22060083-9.
[8] 秦煜, 王亭, 辛景舟, 汤喻杰, 王威娜. 形状记忆合金增强水泥基复合材料及其构件研究进展[J]. 材料导报, 2024, 38(19): 23060190-9.
[9] 张维, 张义博, 张琪, 姚继明, 郝尚. PDMS包封CPCM制备三明治结构织物及热性能分析[J]. 材料导报, 2024, 38(19): 23050176-5.
[10] 张立卿, 余家乐, 王云洋, 韩宝国, 陈梦成, 许开成. 渗透结晶水泥基复合材料研究综述[J]. 材料导报, 2024, 38(13): 22100014-16.
[11] 吴伟喆, 刘阳, 张艺欣, 黄建山, 闫国威. 冻融环境下FRCC孔隙结构与力学性能研究综述[J]. 材料导报, 2023, 37(S1): 23010108-12.
[12] 曾关跃, 高专, 熊玉竹. 多壁碳纳米管负载银/微晶纤维素定型复合相变材料的制备及性能研究[J]. 材料导报, 2023, 37(23): 22040102-6.
[13] 王晓楠, 冯德成. 纳米碳/水泥基复合材料研究进展[J]. 材料导报, 2023, 37(21): 22030088-16.
[14] 方桂花, 赵茂森, 孙鹏博. 基于棕榈酸-硬脂酸/膨胀石墨定形复合相变储能材料的制备与表征[J]. 材料导报, 2023, 37(20): 22030005-7.
[15] 张文雅, 周健, 李辉, 徐名凤. 轻质玄武岩纤维高延性水泥基复合材料研制及导热性能研究[J]. 材料导报, 2023, 37(20): 22040279-6.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed