Please wait a minute...
材料导报  2024, Vol. 38 Issue (3): 22100129-7    https://doi.org/10.11896/cldb.22100129
  高分子与聚合物基复合材料 |
酶促咖啡酸制备超疏水棉织物及其油水分离应用
朱飞1,2,3, 杨雪1,2,3, 苏静1,2,3, 王鸿博1,2,3,*
1 江南大学纺织科学与工程学院,江苏 无锡 214122
2 江苏省功能纺织品工程技术研究中心,江苏 无锡 214122
3 生态纺织教育部重点实验室,江苏 无锡 214122
Preparation of Super Hydrophobic Cotton Fabric Based on Caffeic Acid Catalyzed by Enzyme and Its Oil-Water Separation Application
ZHU Fei1,2,3, YANG Xue1,2,3, SU Jing1,2,3, WANG Hongbo1,2,3,*
1 College of Textile Science and Engineering, Jiangnan University, Wuxi 214122, Jiangsu, China
2 Jiangsu Engineering Technology Research Center for Functional Textiles, Wuxi 214122, Jiangsu, China
3 Key Laboratory of Science & Technology of Eco-textiles, Ministry of Education, Wuxi 214122, Jiangsu, China
下载:  全 文 ( PDF ) ( 23596KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 海上溢油事故和工业废水的排放对环境造成的危害日益严重,为此选用棉织物并对其进行超疏水改性使其成为油水分离材料。先利用漆酶、咖啡酸和Fe2+在棉织物表面构建微米级粗糙结构,之后利用低表面能物质十六烷基三甲氧基硅烷(HDTMS)修饰制备出具有复合结构的超疏水改性棉织物。对改性棉织物的表面形貌、化学组成、耐久稳定性、自清洁性能和油水分离性能进行测试。结果表明:当咖啡酸浓度为3 mg/L、硫酸亚铁浓度为12 mg/L、漆酶浓度为0.75 U/mL、HDTMS浓度为1%(质量分数,下同)时,制备的改性棉织物具有良好的超疏水性能,静态接触角高达164.6°,滚动角为6.75°。改性棉织物在耐摩擦、耐酸碱、耐水洗的测试中均表现出稳定的超疏水性能,并表现出良好的自清洁性能,在经过15次油水分离循环后,分离效率能保持在96%以上,在自清洁服装和油水分离的应用方面具有巨大的潜力。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
朱飞
杨雪
苏静
王鸿博
关键词:  超疏水  咖啡酸  漆酶  十六烷基三甲氧基硅烷  棉织物  油水分离    
Abstract: The oil spill accident at sea and the discharge of industrial waste water have caused increasingly serious harm to the environment. Therefore, cotton fabric has been super hydrophobic modified to make it a potential material for oil water separation. Laccase, caffeic acid and Fe2+ were used to construct a micron scale rough structure on the surface of cotton fabric, and then the composite structure of super hydrophobic modified cotton fabric was prepared by modifying the cotton fabric with low surface energy substance hexadecyl trimethoxysilane (HDTMS). The surface morphology, chemical composition, durability, self-cleaning performance and oil-water separation performance of the modified fabric were tested. The results showed that when the concentration of caffeic acid was 3 mg/L, the concentration of ferrous sulfate was 12 mg/L, the concentration of laccase was 0.75 U/mL, and the concentration of HDTMS was 1%, the modified cotton fabric had good super hydrophobic properties. The static contact angle was 164.6°, and the rolling angle was 6.75°. The modified cotton fabric shows stable super hydrophobic perfor-mance in the tests of friction resistance, acid and alkali resistance, and water washing resistance, and shows good self-cleaning performance. After 15 oil-water separation cycles, the separation efficiency can be maintained at more than 96%, which has great potential in the application of self-cleaning clothing and oil-water separation.
Key words:  super hydrophobic    caffeic acid    laccase    hexadecyltrimethoxysilane    cotton fabric    oil-water separation
出版日期:  2024-02-10      发布日期:  2024-02-19
ZTFLH:  TB34  
基金资助: 国家自然科学基金(52003108);中国博士后科学基金资助项目(2022M721359);中央高校基本科研业务费专项资金(JUSRP121027)
通讯作者:  *王鸿博,江南大学纺织科学与工程学院教授、博士研究生导师。2007毕业于江南大学获博士学位。长期从事功能纺织材料、纺织技术、纺织新产品开发研究。主持江苏省重大科技成果转化、江苏省科技攻关、省部级重点实验室等项目10项,主要参与国家“十三五”重大科技专项、国家自然科学基金、博士点基金和其他省部级项目8项。发表学术论文180多篇,其中SCI收录期刊论文40余篇,CSCD论文100余篇。授权发明专利15件。wxwanghb@163.com   
作者简介:  朱飞,自2020年9月以来在江南大学攻读材料与化工专业硕士学位,在王鸿博教授的指导下进行研究。目前主要研究领域为功能性纺织材料的制备理论与技术和功能纺织品设计与开发。
引用本文:    
朱飞, 杨雪, 苏静, 王鸿博. 酶促咖啡酸制备超疏水棉织物及其油水分离应用[J]. 材料导报, 2024, 38(3): 22100129-7.
ZHU Fei, YANG Xue, SU Jing, WANG Hongbo. Preparation of Super Hydrophobic Cotton Fabric Based on Caffeic Acid Catalyzed by Enzyme and Its Oil-Water Separation Application. Materials Reports, 2024, 38(3): 22100129-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.22100129  或          https://www.mater-rep.com/CN/Y2024/V38/I3/22100129
1 Eriksson M, Swerin A. Current Opinion in Colloid & Interface Science, 2020, 47, 46.
2 Melina E S, Costa L, Milady R A, et al. Journal of Sol-Gel Science and Technology, 2020, 95(1), 22.
3 Xu L Y, Deng J W, Guo Y, et al. Textile Research Journal, 2019, 89(10), 1853.
4 Ou J F, Wang F J, Li W, et al. Progress in Organic Coatings, 2020, 146, 105700.
5 Cheng Y, Zhu T X, Li S H, et al. Chemical Engineering Journal, 2019, 355, 290.
6 Jiang Y H, Zhang Y Q, Wang Z H, et al. Journal of Colloid and Interface Science, 2022, 628, 356.
7 Wang X, Ding H, Wang C H, et al. Applied Surface Science, 2021, 567, 150808.
8 Yang S D, Li H Y, Liu S, et al. Journal of Hazardous Materials, 2022, 439, 129688.
9 Wu Z L, Fang K J, Chen W C, et al. Industrial Crops & Products, 2021, 171, 113896.
10 Lee H, Dellatore S M, Miller W M, et al. Science, 2007, 318(5849), 426.
11 Ahmed K F, Aneela M, Ghulam M. Journal of Food & Drug Analysis, 2016, 24(4), 695.
12 Lai C F, Li S, Peng L L, et al. Chemical Industry and Engineering Progress, 2010, 29(7), 1300 (in Chinese).
赖超凤, 李爽, 彭丽丽, 等. 化工进展, 2010, 29(7), 1300.
13 Bai R B. Laccase-catalyzed polymerization of aromatic compounds on dyeing of wool and cotton fabrics. Master's Thesis, Jiangnan University, China, 2019(in Chinese).
白茹冰. 漆酶催化芳香化合物聚合及其对羊毛和棉织物染色研究. 硕士学位论文, 江南大学, 2019.
14 Madry K, Nowicki W. The European Physical Journal E., Soft Matter, 2021, 44(11), 138.
15 Liu S Q, Huang Y X, Yu Y L, et al. Wood Science and Technology, 2022, 36(5), 9(in Chinese).
刘诗琴, 黄宇翔, 余养伦, 等. 木材科学与技术, 2022, 36(5), 9.
16 Agergaard A H, Pedersen S U, Birkedal H, et al. Polymer Chemistry, 2020, 11(35), 5572.
17 Nishino T, Meguro M, Nakamae K, et al. Langmuir, 1999, 15(13), 4321.
18 Zhang Z Y, Liu H, Qiao W C. Colloids & Surfaces A:Physicochemical and Engineering Aspects, 2020, 589, 124433.
19 Li Y S, Kuan J F, Wei C C, et al. Industrial Crops and Products, 2022, 189, 115836.
20 Feng J C, Wang X, Shao H Y, et al. ACS Applied Materials & Interfaces, 2021, 13(17), 20885.
21 Zhou Q Q, Yan B B, Xing T L, et al. Carbohydrate Polymers, 2019, 203, 1.
22 Cai Y, Zhao Q, Quan X, et al. Colloids and Surfaces A, Physicochemical and Engineering Aspects, 2020, 586, 124189.
23 Fan S M, Jiang S J, Wang Z J, et al. Nanomaterials, 2022, 12, 2510.
24 Zhou Q Q. Study on superhydrophobic modification of textiles by phenolic compounds and metal ions and its application. Ph. D. Thesis, Suzhou University, China, 2020(in Chinese).
周青青. 酚类化合物/金属离子对纺织品的超疏水改性及应用研究. 博士学位论文, 苏州大学, 2020.
[1] 位振, 戴飞, 何强. 多级结构超疏水表面的制备与性能分析[J]. 材料导报, 2024, 38(9): 22100133-5.
[2] 黄勇, 李俊越, 张栋葛, 韩津春, 郁崇文, 俞建勇, 丁彬, 李召岭. 化纤织物疏水疏油功能整理的发展概况[J]. 材料导报, 2024, 38(4): 22090167-14.
[3] 李承刚, 吴石莲, 常国华, 关润泽, 周炳见, 杨彤, 杨宇. 光伏应用超疏水自清洁涂层材料的研究进展[J]. 材料导报, 2024, 38(23): 23080075-12.
[4] 李雪伍, 杜少盟, 闫佳洋, 石甜. 铝合金超疏水表面制备方法及防腐应用研究现状[J]. 材料导报, 2024, 38(19): 23030276-10.
[5] 艾恒雨, 梁洪博, 刘乾亮, 廉新宇, 刘彩虹. 超疏水蒸馏膜的功能改性研究进展[J]. 材料导报, 2024, 38(10): 22080205-9.
[6] 张伟钢, 李娇, 吕丹丹. 涂料助剂对PDMS改性环氧树脂/Al复合涂层性能的影响[J]. 材料导报, 2024, 38(10): 23010030-5.
[7] 李权威, 刘乐乐, 赵丕琪, 于有良, 邵明军, 芦令超. 氟硅树脂基超疏水涂层的组成设计及性能评价[J]. 材料导报, 2023, 37(9): 21090111-7.
[8] 赵毅, 王佳, 周娇, 王梦雨, 杨臻. 水泥基超疏水材料自清洁技术研究进展[J]. 材料导报, 2023, 37(6): 21100243-17.
[9] 吕丹丹, 李慕荣, 张伟钢. 超疏水PDMS改性聚氨酯/黄铜复合涂层的制备及性能表征[J]. 材料导报, 2023, 37(4): 21060116-6.
[10] 王丽丽, 唐杰, 秦陆洋, 李雪莎, 聂朝胤. 基于硅溶胶形核剂的柔性二氧化硅气凝胶的研究[J]. 材料导报, 2023, 37(24): 22080230-6.
[11] 周子吉, 孙慧慧, 王群, 曹文, 周忠华, 黄悦. 可见光宽波带减反超疏玻璃的制备工艺及结构探讨[J]. 材料导报, 2023, 37(18): 22030191-7.
[12] 李少鹏, 王德芳, 谢文玲, 李秀兰, 李轩. 一步法反应时间对AZ91镁合金表面超疏水涂层耐腐蚀性的影响[J]. 材料导报, 2023, 37(18): 22010063-6.
[13] 谢鑫, 吕楠, 涂秋芬. 基于“酚-胺”化学构建抗污表面的研究[J]. 材料导报, 2023, 37(17): 22030171-6.
[14] 李吉泰, 展悦, 冯明珠, 崔永岩. 超亲水-空气疏油水下超疏油不锈钢网的制备及性能[J]. 材料导报, 2022, 36(Z1): 22010079-5.
[15] 杨喜臻, 宋原吉, 于思荣, 王康, 王珺. 不锈钢基超疏水表面的研究现状及发展趋势[J]. 材料导报, 2022, 36(Z1): 21120203-9.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed