Please wait a minute...
CLDB  2017, Vol. 31 Issue (23): 58-65    https://doi.org/10.11896/j.issn.1005-023X.2017.023.007
  专题栏目:超高性能混凝土及其工程应用 |
钢纤维对超高性能混凝土干燥收缩的影响*
吴林妹1, 2, 史才军1, 张祖华1, 2, 王浩2
1 湖南大学土木工程学院,长沙 410082;
2 Centre for Future Materials, University of Southern Queensland,Toowoomba, QLD 4350, Australia
Effects of Steel Fiber on Drying Shrinkage of Ultra High Performance Concrete
WU Linmei1, 2, SHI Caijun1, ZHANG Zuhua1, 2, WANG Hao2
1 College of Civil Engineering, Hunan University, Changsha 410082;
2 Centre for Future Materials,University of Southern Queensland, Toowoomba, QLD 4350, Australia
下载: 
输出:  BibTeX | EndNote (RIS)      
摘要 研究了在(20±2) ℃、相对湿度为(50±5)%的环境中钢纤维体积掺量为0%、1%、2%和3%的超高性能混凝土(UHPC)的干燥收缩。结果表明: UHPC在前7 d的干燥收缩发展速率较快,7 d后发展速率逐渐减缓;但当钢纤维掺量超过2%后,钢纤维对干燥收缩的改善作用明显降低,相比钢纤维掺量为2%的UHPC,3%掺量UHPC的干燥收缩仅仅降低了1.5%。钢纤维高弹模及它与基体的界面粘结有效降低了混凝土的干燥收缩,但钢纤维掺量过多可导致多孔薄弱的界面区增加,从而使其对混凝土的收缩抑制作用减小。粉煤灰对超高性能混凝土干燥收缩的抑制作用大于矿粉。提出的新的数学拟合指数公式相比于文献中常用的ACI和王铁梦公式与实测结果吻合度更好。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吴林妹
史才军
张祖华
王浩
关键词:  超高性能混凝土  钢纤维  粉煤灰  矿粉  干燥收缩  数学拟合    
Abstract: This paper reports the study of the influence of steel fibers on drying shrinkage of ultra-high performance concrete (UHPC) at fiber volume content of 0%, 1%, 2% and 3%, temperature of (20 ± 2) ℃ and relative humidity of (50±5)%. The results showed that during the first 7 days, the drying shrinkage rate of UHPC was very fast, while after 7 days it gradually decreased. The interfacial bonding of steel fiber and the physical properties of steel fiber can effectively reduce the drying shrinkage. However, when the steel fiber exceeds an optimal volume, the effect of steel fiber on drying shrinkage can decrease. Compared with the steel fiber content at 2%, the drying shrinkage of the UHPC with 3% steel fiber was decreased by only 1.5%. The reason is that the increase in the steel fiber leads to an increase in the interface layer, the interface transition zone is usually more porous than the matrix, which easily leads to shrinkage, and consequently reducing the beneficial effect of steel fiber on drying shrinkage control. It was also found that the inhibition of fly ash on the drying shrinkage of UHPC was higher than slag. The experiment also tested the classic dry shrinkage models: the ACI model and the Wang Tiemeng model. Based on the two models and the experimental fitting, a new mathematical model (a combined index model) has been proposed. The results showed that the combined index model fitted better than the two models mentioned above.
Key words:  ultra-high performance concrete (UHPC)    steel fiber    fly ash    slag    drying shrinkage    mathematical model fitting
出版日期:  2017-12-10      发布日期:  2018-05-08
ZTFLH:  TU528  
基金资助: *国家自然科学基金(U1305243); 湖南省研究生创新研究项目(CX2016B106)
通讯作者:  史才军:男,1963年生,教授,博士研究生导师,主要从事固体废弃物资源化利用、新能源材料和纳米材料等研究 E-mail:cshi@hnu.edu.cn   
作者简介:  吴林妹:女, 1987年生,博士研究生,研究方向为土木工程材料、结构工程 E-mail:linmeiwu@hnu.edu.cn
引用本文:    
吴林妹, 史才军, 张祖华, 王浩. 钢纤维对超高性能混凝土干燥收缩的影响*[J]. CLDB, 2017, 31(23): 58-65.
WU Linmei, SHI Caijun, ZHANG Zuhua, WANG Hao. Effects of Steel Fiber on Drying Shrinkage of Ultra High Performance Concrete. Materials Reports, 2017, 31(23): 58-65.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.023.007  或          https://www.mater-rep.com/CN/Y2017/V31/I23/58
1 Gilbert R I. Time effects in concrete structures[J]. Int J Cem Compos Lightweight Concr, 1989, 11(1):60.
2 Wu L, Farzadnia N, et al. Autogenous shrinkage of high performance concrete: A review[J]. Constr Build Mater, 2017,149:62.
3 Barr B, Hoseinian S, Beygi M. Shrinkage of concrete stored in natural environments[J]. Cem Concr Compos, 2003,25(1): 19.
4 Mindess S, Young J, Darwin D. Concrete. Upper saddle river, nj 07458[M]. Prentice Hall, Pearson Education, Inc. 2003.
5 Monteiro P. Concrete: Microstructure, properties, and materials[M]. McGraw-Hill Publishing, 2006.
6 Chern J C, Chan Y W. Deformations of concretes made with blast-furnace slag cement and ordinary portland cement[J]. ACI Mater J, 1989,86(4):372.
7 Khatri R, Sirivivatnanon V, Gross W. Effect of different supplementary cementitious materials on mechanical properties of high performance concrete[J]. Cem Concr Res, 1995,25(1):209.
8 Gao X J. Mechanism and assessment methods of early age cracking of high performance concrete[D]. Harbin: Harbin Institute of Technology, 2003(in Chinese).
高小建. 高性能混凝土早期开裂机理与评价方法[D]. 哈尔滨: 哈尔滨工业大学, 2003.
9 Qin H, Pan G, Sun W. Study on the deformation properties of the high performance concrete with fly ash used in bridge[J]. J Southeast University (Nat Sci Ed), 2002,32(5):779(in Chinese).
秦鸿根, 潘钢华, 孙伟. 掺粉煤灰高性能桥用混凝土变形性能研究[J]. 东南大学学报(自然科学版), 2002,32(5):779.
10 Cai A L, Li S K, Yan S, et al. Influence of curing temperature on drying shrinkage characterristics of portland cement mortar with high doping of fly ash[J]. J Chin Ceram Soc, 2005,33(1):100(in Chinese).
蔡安兰, 李顺凯, 严生, 等. 养护温度对高掺量粉煤灰硅酸盐水泥砂浆干缩性能的影响[J]. 硅酸盐学报, 2005,33(1): 100.
11 Bentz D P, Geiker M R, Hansen K K. Shrinkage-reducing admixtures and early-age desiccation in cement pastes and mortars[J]. Cem Concr Res, 2001,31(7):1075.
12 Rodden R, Lange D. Feasibility of shrinkage reducing admixtures for concrete runway pavements[R]. Technical Note, 2004.
13 Brooks J, Jiang X. The influence of chemical admixtures on restrained drying shrinkage of concrete[J]. Special Publication, 1997,173:249.
14 Folliard K J, Berke N S. Properties of high-performance concrete containing shrinkage-reducing admixture[J]. Cem Concr Res, 1997,27(9):1357.
15 Almudaiheem J A, Hansen W. Effect of specimen size and shape on drying shrinkage of concrete[J]. ACI Mater J, 1987,84(2):130.
16 Hansen W, Almudaiheem J A. Ultimate drying shrinkage of concrete-Influence of major parameters[J]. ACI Mater J, 1987,84(3):217.
17 ?elih J, Bremner T W. Drying of saturated lightweight concrete: An experimental investigation[J]. Mater Struct, 1996,29(7):401.
18 Blais P Y, Couture M. Precast, prestressed pedestrian bridge: World??s first reactive powder concrete structure[J]. PCI J, 1999,44(5):60.
19 Dauriac C. Special concrete may give steel stiff competition[N]. Seattle Daily J Commerce, 1997: 5.
20 Dowd W. Reactive powder concrete: Ultra-high performance cement based composite[C]∥Construction Innovation Forum. Uni-ted States, 1999.
21 Sprince A, Korjakins A, Pakrastinsh L, et al. Early age creep and shrinkage of high performance concrete[C]∥Ultra-High Perfor-mance Concrete and Nanotechnology in Construction Proceedings of Hipermat 2012 3rd International Symposium on UHPC and Nanotechnology for High Performance Construction Mater. 2012:309.
22 Long Guangcheng, Chen Yu. Study on the effect of factors on strength and shrinkage of Rpc200 [J]. Ind Construction, 2002, 32(6):4(in Chinese).
龙广成, 陈瑜. Rpc200 的强度及收缩影响研究[J]. 工业建筑,2002,32(6):4.
23 Tam C M, Tam V W, Ng K M. Assessing drying shrinkage and water permeability of reactive powder concrete produced in hong kong[J]. Constr Build Mater, 2012,26(1):79.
24 Cwirzen A, Penttala V, Vornanen C. Reactive powder based concretes: Mechanical properties, durability and hybrid use with opc[J]. Cem Concr Res, 2008,38(10):1217.
25 Garas V Y, Kahn L F, Kurtis K E. Short-term tensile creep and shrinkage of ultra-high performance concrete[J]. Cem Concr Compos, 2009,31(3):147.
26 Li H Y. Effect of polyacrylic ester on the properties of reactive powder concrete[D]. Changsha: Central South University, 2007(in Chinese).
李会艳. 聚丙烯酸酯对活性粉末混凝土性能的影响研究[D]. 长沙:中南大学, 2007.
27 Wang D H, Shi C J, Wu L M. Reasearch and applocations of ultra-high performance concrete (UHPC) in China[J]. Bull Chin Ceram Soc, 2016,35(1):141(in Chinese).
王德辉, 史才军, 吴林妹. 超高性能混凝土在中国的研究和应用[J]. 硅酸盐通报, 2016,35(1):141.
28 Huang K, Deng M, Mo L, et al. Early age stability of concrete pavement by using hybrid fiber together with mgo expansion agent in high altitude locality[J]. Constr Build Mater, 2013,48: 685.
29 Miao B, Chern J C, Yang C A. Influences of fiber content on prope-rties of self-compacting steel fiber reinforced concrete[J]. J Chin Inst Eng, 2003,26(4):523.
30 Yoo D Y, Shin H O, Yang J M, et al. Material and bond properties of ultra high performance fiber reinforced concrete with micro steel fibers[J]. Composites Part B: Eng, 2014,58:122.
31 Wu X L. Study on prediction model of concrete strength and drying shrinkage[D].Beijing: China Academy of Building Research, 2008 (in Chinese).
吴学利. 混凝土强度和干燥收缩预测模型的研究[D]. 北京:中国建筑科学研究院, 2008.
32 Bazant Z P, Baweja S. Creep and shrinkage prediction model for analysis and design of concrete structures: Model b3[J]. ACI Special Publications, 2000,194:1.
33 Bangham D, Fakhoury N, Mohamed A. The swelling of charcoal. Part ii. Some factors controlling the expansion caused by water, benzene and pyridine vapours[J]. Proceedings of the Royal Society of London Series A, 1932,138(834):162.
34 Acker P, Behloul M. Ductal?? technology: A large spectrum of properties, a wide range of applications[C]∥Proc of the Int Symp on UHPC. Kassel, Germany, 2004.
35 Malhotra V. High-performance high-volume fly ash concrete[J]. Concr Int, 2002,24(7):30.
36 Jiang Z W, Sun Z P, Wang P M, et al. Study on self-desiccation effect of high performance concrete[J]. J Building Mater, 2004,7(1): 19(in Chinese).
蒋正武, 孙振平, 王培铭, 等. 高性能混凝土中自干燥效应的研究[J]. 建筑材料学报, 2004,7(1):19.
37 Mehta P K. Concrete structure, properties and materials[M].New Jersey:Prentice-Hall, 1986.
38 Mehta P K. High-performance, high-volume fly ash concrete for sustainable development[C]∥Proceedings of the International Workshop on Sustainable Development and Concrete Technology. USA, 2004.
39 Subramaniam K V, Gromotka R, Shah S P, et al. Influence of ultrafine fly ash on the early age response and the shrinkage cracking potential of concrete[J]. J Mater Civil Eng, 2005,17(1):45.
40 Gdoutos M K, Shah S, Dattatraya D. Relationships between engineering characteristics and material properties of high strength-high performance concrete[C]∥Role of Concrete In Sustainable Development: Proceedings of the International Symposium. Northwestern Dundee, Scotland, UK., 2003.
41 Tazawa E, Miyazawa S. Influence of constituents and composition on autogenous shrinkage of cementitious materials[J]. Mag Concr Res, 1997,49(178):15.
42 Cusson D, Hoogeveen T. Internal curing of high-performance concrete with pre-soaked fine lightweight aggregate for prevention of autogenous shrinkage cracking[J]. Cem Concr Res, 2008,38(6):757.
43 Ma D H, Shang J L, Li Z Y. Self-shrinkage high performance concrete[J]. J Xi??an University of Architecture & Technology(Natural Science Edition) 2003,35(1):82(in Chinese).
马冬花, 尚建丽, 李占印. 高性能混凝土的自收缩[J]. 西安建筑科技大学学报(自然科学版), 2003,35(1):82.
44 Li Y, Bao J, Guo Y. The relationship between autogenous shrinkage and pore structure of cement paste with mineral admixtures[J]. Constr Build Mater, 2010,24(10):1855.
45 Noushini A, Vessalas K, Arabian G, et al. Drying shrinkage behaviour of fibre reinforced concrete incorporating polyvinyl alcohol fibres and fly ash[J]. Adv Civil Eng, 2014,2014:356.
46 Wu Z, Shi C, Khayat K H. Influence of silica fume content on microstructure development and bond to steel fiber in ultra-high strength cement-based materials (uhsc)[J]. Cem Concr Compos, 2016,71:97.
47 Habel K, Viviani M, Denarié E, et al. Development of the mechanical properties of an ultra-high performance fiber reinforced concrete (uhpfrc)[J]. Cem Concr Res, 2006,36(7):1362.
48 Saje D, Saje F. Autogenous shrinkage development in HPC[C]∥International Conference on High Performance Materials in Bridges.Hawaii, 2003.
49 Turatsinze A, Farhat H, Granju J L. Influence of autogenous cracking on the durability of repairs by cement-based overlays reinforced with metal fibres[J]. Mater Struct, 2003,36(10):673.
[1] 刘晓楠, 张春晓, 王世合, 张高展, 毛继泽, 曹少华, 刘国强. 养护制度对添加纳米SiO2超高性能混凝土动静态力学性能的影响[J]. 材料导报, 2025, 39(2): 23070188-7.
[2] 王艳, 李伊岚, 杨子凡, 常天风, 孙琳琳. OPC-SAC复合胶凝体系对超高性能混凝土性能的影响[J]. 材料导报, 2025, 39(2): 23120218-7.
[3] 郑琨鹏, 葛好升, 李正川, 刘贵应, 田光文, 王万值, 徐国华, 孙振平. 河砂与石英砂对蒸养超高性能混凝土(UHPC)性能的影响及机理[J]. 材料导报, 2024, 38(7): 22040216-6.
[4] 罗树琼, 葛亚丽, 潘崇根, 袁盛, 杨雷. 微波活化粉煤灰的微观结构及粉煤灰-水泥浆体的早期性能[J]. 材料导报, 2024, 38(7): 22090256-6.
[5] 张鹏, 陈星月, 李素芹, 任志峰, 李怡宏, 赵爱春, 何奕波. 粉煤灰制备沸石的技术及应用现状[J]. 材料导报, 2024, 38(7): 22100063-14.
[6] 杨简, 李洋, 陈宝春, 徐港, 黄卿维. UHPC直拉试验方法与本构关系研究[J]. 材料导报, 2024, 38(6): 22110263-9.
[7] 褚洪岩, 汤金辉, 王群, 高李, 赵志豪. 采用纳米氧化铝制备高弹性模量超高性能混凝土的可行性研究[J]. 材料导报, 2024, 38(5): 22110073-6.
[8] 谭洪波, 孔祥辉, 贺行洋, 李懋高, 苏英, 蹇守卫, 杨进. 化学外加剂对粉煤灰湿法细化活化的影响[J]. 材料导报, 2024, 38(5): 22100005-7.
[9] 张翠榕, 张鸿儒, 江隽杰, 易世帆. 碱激发生活垃圾焚烧炉渣底灰泡沫混凝土制备及性能研究[J]. 材料导报, 2024, 38(22): 23100256-7.
[10] 张洪智, 梁取平, 邵明扬, 姜能栋, 杨梦宇, 隋高阳, 葛智. 磨细循环流化床粉煤灰对泡沫轻质土力学性能和孔结构的影响[J]. 材料导报, 2024, 38(22): 24020041-7.
[11] 刘娟红, 安树好, 陈德平, 张月月. 融合石膏组分和微纳米结构“双基因”调控的铁尾矿粉无熟料固结体力学性能[J]. 材料导报, 2024, 38(21): 23010110-10.
[12] 唐振中, 贾鲁涛, 林永权, 吴捷, 张亚梅. 钨尾矿粉对水泥基3D打印混凝土流变、水化及力学性能的影响[J]. 材料导报, 2024, 38(21): 23060169-6.
[13] 董必钦, 张枭, 刘源涛, 何晓伟, 王琰帅. 硫酸铝对高掺量流化床粉煤灰基泡沫混凝土性能的影响[J]. 材料导报, 2024, 38(20): 23090133-8.
[14] 郭远臣, 刘芯州, 王雪, 叶青, 向凯, 王锐. 多尺度钢纤维混杂增强水泥基材料抗冲击性能及阻裂能力[J]. 材料导报, 2024, 38(2): 22030271-8.
[15] 孙嘉伦, 张春晓, 毛继泽, 李明哲, 高小建. 养护制度对超高性能混凝土强度的影响机理[J]. 材料导报, 2024, 38(18): 23050059-5.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed