Please wait a minute...
材料导报编辑部  2017, Vol. 31 Issue (22): 146-152    https://doi.org/10.11896/j.issn.1005-023X.2017.022.029
  计算模拟 |
Ge、Si元素对ZrO2和Zr(Fe,Cr)2能量与电子结构的影响*
周惦武,何蓉,刘金水,彭平
湖南大学汽车车身先进设计制造国家重点实验室,长沙 410082
Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2
ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping
State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha 410082
下载:  全 文 ( PDF ) ( 726KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用基于密度泛函理论的第一性原理计算方法,研究Ge、Si元素对锆合金中与腐蚀相关的ZrO2氧化膜相和Zr(Fe,Cr)2第二相能量与电子结构的影响。合金形成热、结合能的计算结果表明:ZrO2四方相结构不稳定,立方相易形成且结构稳定,氧化膜晶体结构从四方相向立方相发生转变影响锆合金的耐腐蚀性能;Ge、Si元素均降低ZrO2立方相的结构稳定性和形成能力,与Ge相比,Si易取代Zr(Fe,Cr)2第二相中的Cr,增加锆合金Fe/Cr原子比。电子态密度和Mulliken电子占据数的计算结果表明:ZrO2中Zr与O存在杂化共振与较强的离子键作用,Ge、Si降低ZrO2立方相结构稳定性的原因主要在于削弱了Zr-O之间的离子键作用; ZrO2氧化膜相和Zr(Fe,Cr)2第二相是影响锆合金耐腐蚀性能的两个重要因素,对Si而言,形成含Si的Zr(Fe,Cr)2第二相对锆合金耐腐蚀性能产生不利影响,改善锆合金耐腐蚀性能需要ZrO2晶体结构改变占主导地位;对Ge而言,含Ge的Zr(Fe,Cr)2第二相难形成,第二相对锆合金耐腐蚀性能的影响相对Si较小,减缓ZrO2由四方相向立方相的转变倾向,是Ge改善锆合金耐腐蚀性能的重要原因。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
周惦武
何蓉
刘金水
彭平
关键词:  锆合金  结构稳定性  形成能力  电子结构  第一性原理计算    
Abstract: Effects of Ge, Si addition on energy and electronic structure of ZrO2 and Zr(Fe,Cr)2 related to the corrosion of zirconium alloy were studied by First-principles calculations based on the density functional theory. The calculated heats of formation and cohesive energies show that ZrO2 tetragonal phase is not stable, cubic phase is easily formed and has the highest structural stability, thus the change occurs from tetragonal phase to cubic phase for crystal structure of oxidation, which affects the corrosion resistance of zirconium alloy. Ge, Si can reduce the forming ability and structural stability of ZrO2 cubic phase, Si can easily replace Cr atoms of Zr(Fe, Cr)2 systems, thus Fe/Cr atomic ratio of the second phase in zirconium alloy is improved. The calculations of the density of states (DOS) and Mulliken electronic populations show that hybrid resonant phenomenon and more ionic bonds are both seen between Zr and O of ZrO2, and the reason of reduced structural stability of ZrO2 cubic phase attributes to the weakened ionic bonds between Zr and O with the addition of Ge, Si. It is considered as ZrO2 and Zr(Fe,Cr)2 phase for affecting the corrosion resistance of zirconium alloy. In the case of adding Si, Si contained second phase Zr(Fe,Cr)2 is harmful to corrosion resistance of zirconium alloy, if the change of ZrO2 crystal structure is dominated, the corrosion resistance of zirconium alloy will be improved. As far as Ge is concerned, it is difficult for the formation of Ge contained second phase Zr(Fe,Cr)2, thus the influence of second phase on corrosion resistance of zirconium alloy is less than that of adding Si. If the change tendency from tetragonal phase to cubic phase has slowed down, the corrosion resistance of zirconium alloy will be improved.
Key words:  zirconium alloy    structural stability    forming ability    electronic structure    first-principles calculations
发布日期:  2018-05-08
ZTFLH:  TG146.4  
  TL341  
基金资助: *国家科技重大专项项目(2013ZX06004009)
作者简介:  周惦武:男,1971年生,博士,教授,博士研究生导师,研究方向为高性能金属材料E-mail:ZDWe_mail@126.com
引用本文:    
周惦武,何蓉,刘金水,彭平. Ge、Si元素对ZrO2和Zr(Fe,Cr)2能量与电子结构的影响*[J]. 材料导报编辑部, 2017, 31(22): 146-152.
ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2. Materials Reports, 2017, 31(22): 146-152.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.022.029  或          https://www.mater-rep.com/CN/Y2017/V31/I22/146
1 Takeda K, Anada H. Mechanism of corrosion rate degradation due to tin[C]//Zirconium in the Nuclear Industry:The 12th International Symposium.Philadelphia,2000:1354.
2 Jeong Y H, Kim H G, Kim D J, et al.Influence of Nb concentration in the α matrix on the corrosion behavior of ZrxNb binary alloys[J].J Nuclear Mater,2003,72:323.
3 Anada A H, Herb B J, Nomoto K, et al.Effect of annealing temperature on corrosion behavior and ZrO2 microstructure of Zircaloy4 cladding tube[C]//Zirconium in the Nuclear Industry: The 11th International Symposium. Philadelphia,1996:1295.
4 Cao X X, Yao M Y, Peng J C.Corrosion behavior of Zr(Fex,Cr1-x)2 alloy 400 ℃ in superheated steam[J].Acta Metall, 2011,47(7):882 (in Chinese).
曹潇潇,姚美意,彭建超. Zr(Fex,Cr1-x)2合金在400 ℃过热蒸汽中的腐蚀行为[J].金属学报,2011,47(7):882.
5 Zhang J L, Xie X F, Yao M Y, et al. Effect of Ge addition on corrosion performance of Zr-4 alloy in lithiated solution[J].Chinese J Nonferrous Metals, 2013,23(6):1542(in Chinese).
张金龙,谢兴飞,姚美意,等. Ge含量对Zr-4合金在LiOH水溶液中耐腐蚀性能的影响[J].中国有色金属学报,2013,23(6):1542.
6 Sun F T, Yao M Y, Xu L, et al. Effect of adding dilute Si on corrosion resistance of zirconium alloys[J].J Shanghai University(Natural Science), 2015,21(2):182(in Chinese).
孙凤涛,姚美意,徐龙,等. 添加微量Si对锆合金耐腐蚀性能的影响[J].上海大学学报(自然科学版),2015,21(2):182.
7 刘建章. 核结构材料[M].北京:化学工业出版社,2007:19.
8 杨文斗. 反应堆材料学[M].北京:原子能出版社,2006:260.
9 Sell H J,Siegrum T P,Friedrich G. Effect of alloying elements and impurities on in-BWRcorrosion of zirconium alloys[C]//ASTM Symposium on Zirconium in the Nuclear Industry:14th International Symposium,2006:404.
10 Kass S,Grozier J D,Shubert F L.Effects of silicon,nitrogen, oxygen on the corrosion and hydrogen absorption performance of zircaloy-2[J].Corrosion,1964,20(11):350.
11 Zhang Haixia, Li Zhongkui, Xu Bingshe, et al. The effect of α-Zr matrix microstructure on the formation of oxide film and the corrosion resistance of new zirconium alloy[J].Funct Mater, 2014,45(8):08062 (in Chinese).
章海霞,李中奎,许并社,等.α-Zr基体显微组织对新锆合金氧化膜的形成及其耐腐蚀性能的影响[J].功能材料,2014,45(8):08062.
12 Qiu R S, Lan B F, Zhai L J, et al. Review of second phase particles on zirconium alloys(Ⅱ): Zr-Sn-Nb-Fe alloys[J].Chinese J Nonferrous Metals, 2012, 22(6):1605 (in Chinese).
邱日盛,栾佰峰,柴林江,等. 锆合金第二相研究述评(Ⅱ):Zr-Sn-Nb-Fe系合金[J].中国有色金属学报,2012,22(6):1605.
13 Zhai L J, Lan B F, Zhou Y, et al. Review of second phase particles on zirconium alloys(Ⅰ): Zircaloys[J]. Chinese J Nonferrous Metals, 2012, 22(6):1594 (in Chinese).
柴林江,栾佰峰,周宇,等.锆合金第二相研究述评(Ⅰ):Zircaloys合金[J].中国有色金属学报,2012,22(6):1594.
14 Segall M D, Linan P L D, Probert M J, et al. First-principles simulation: ideas, illustrations and the CASTEP code[J].J Phys:Condens Matter,2002,14(11):2717.
15 Marlo M,Milman V.Density-functional study of bulk and surface properties of titanium nitride using different exchange-correlation functionals[J].Phys Rev B, 2000,62(4):2899.
16 Vanderbilt D. Soft self-consistent pseudopotentitals in a generalized eigenvalue formalism[J].Phys Rev B, 1990,41(11):7892.
17 Hammer B, Hausen L B, Norkov J K.Improved adsorption energetics withen density-functional theory using revised Perdew-Burke-Ernzerhof functionals[J].Phys Rev B,1999,59(11):7413.
18 Frascis G P,Payne M C. Finite basis set corrections to total energy pseudopotential calcaulations[J].J Phys: Condens Matter,1990,19(2):4395.
19 Monkhorst H J, Pack J D. Special points for Brillouin-zone integrations[J]. Phys Rev B, 1976,13(12):5188.
20 Teufer G. The crystal structure of tetraonal ZrO2[J].Acta Cryst, 1962,15:1187.
21 Wang X, Wang X, Yin Q Q, et al. First-principles study of Zr-based binary oxide doped with Ru[J].Chinese J Nonferrous Metals, 2014, 24(5):1327(in Chinese).
王鑫,王欣,尹倩倩,等. Ru 掺杂Zr 基二元氧化物的第一性原理研究[J].中国有色金属学报,2014,24(5):1327.
22 Aldebert P, Traverse J P. Structure and ionic mobility of Zirconia at high temperature[J]. J Am Ceram Soc, 1985,68(1):34.
23 Song Y, Guo Z X, Yang R. Influence of selected alloying elements on the stability of magnesium dihydride for hydrogen storage applications: A first-principles investigation[J]. Phys Rev B, 2004,69(9):094205.
24 Liu X, Meng C G, Liu F H. Theoretical study of O2 addsorption on the (100) surface of NiTi alloy[J].Acta Metall, 2006,42(4):421(in Chinese).
刘新,孟长功,刘丰厚. O2在NiTi合金(100)表面吸附的理论研究[J].金属学报,2006,42(4):421.
25 Ye X, Manos M.The adsorption and dissociation of O2 molecular precursors on Cu: The effect of steps[J]. Surf Sci,2003,538(3):219.
26 Glassford K M, Chelikowsky J R. Electronic and structural properties of RuO2[J].Phys Rev B, 1993,47(4):1732.
[1] 杨佳琛, 江海涛, 田世伟, 陈飞达. 基于电子结构理论的微合金Q355B热轧钢力学性能预测[J]. 材料导报, 2024, 38(7): 22090319-5.
[2] 付浩, 彭振驯, 廖业宏, 薛佳祥, 沈朝, 周张健. 基于事故容错燃料的高燃耗组件研究进展[J]. 材料导报, 2024, 38(22): 23090025-12.
[3] 毛鹏燕, 赵晖, 李宏达, 邰凯平. 碳纳米管-铜复合薄膜材料的抗辐照损伤性能研究[J]. 材料导报, 2024, 38(19): 22120135-6.
[4] 王勇, 孙天昊, 李永存, 孙丽丽, 贾鑫, 张旭昀. 高压下NbMoTaWV难熔高熵合金结构和力学性能的第一性原理研究[J]. 材料导报, 2024, 38(18): 22120037-6.
[5] 全琪炜, 刘向兵, 赵文增, 吴奕初, 徐超亮, 张晏玮, 李远飞, 钱王洁, 贾文清, 尹建. Xe离子辐照后Zr-4和Zr-1Nb合金的力学和耐腐蚀性能研究[J]. 材料导报, 2024, 38(18): 23020010-5.
[6] 冯文彪, 李鑫, 张亚龙. Mg3Sb2合金中Mg空位对电子传输性能的影响[J]. 材料导报, 2024, 38(17): 22110149-7.
[7] 郑勇, 邱绍宇, 魏连峰, 杨灿湘, 王宇, 田大容, 姚力夫. 高压条件下锆及其合金ω相变研究进展[J]. 材料导报, 2024, 38(17): 23020025-7.
[8] 彭超, 赵勇, 张芳, 龙旭, 林金保, 常超. TixNbMoTaW系高熵合金性能的第一性原理计算[J]. 材料导报, 2024, 38(15): 23040229-8.
[9] 张琦祥, 苑峻豪, 李震, 李文杰, 孙丹, 王清, 董闯. 基于第一性原理计算的固溶体合金集成学习设计方法[J]. 材料导报, 2024, 38(13): 23030089-8.
[10] 王亚恒, 左家栋, 王亚强, 张金钰, 吴凯, 刘刚, 孙军. 事故容错锆包壳表面FeCrAl合金涂层的研究进展[J]. 材料导报, 2024, 38(12): 22110325-11.
[11] 刘晨曦, 庞国旺, 潘多桥, 史蕾倩, 张丽丽, 雷博程, 赵旭才, 黄以能. S和Al掺杂单层g-C3N4电子结构与光学性质的第一性原理研究[J]. 材料导报, 2023, 37(9): 21100044-6.
[12] 余瑞, 张永安, 李亚楠, 李锡武, 李志辉, 闫丽珍, 温凯, 熊柏青. Zn对Al-Mg-Si合金时效析出相稳定性影响的第一性原理研究[J]. 材料导报, 2023, 37(4): 21040034-5.
[13] 江永, 杜亚平. 稀土氧化物复合材料在电催化中的研究进展[J]. 材料导报, 2023, 37(3): 22110067-9.
[14] 才文文, 贺勇, 张敏, 史俊杰. AZrX3(A=Ba, Ca;X=S, Se,Te)钙钛矿结构及光电特性的第一性原理研究[J]. 材料导报, 2023, 37(2): 21070076-6.
[15] 孙翠翠, 毕舰镭. 边缘修饰对锗烯纳米带电子结构的影响[J]. 材料导报, 2023, 37(13): 21110002-8.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed