Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (20): 140-146    https://doi.org/10.11896/j.issn.1005-023X.2017.020.029
  计算模拟 |
基于三维LBM-CA模型模拟Al-4.7%Cu合金的枝晶形貌和成分分布*
骈松, 张照, 包羽冲, 刘林, 李日
河北工业大学材料科学与工程学院, 天津 300130
Simulation of Dendrite Morphology and Composition Distribution of Al-4.7%Cu Alloy Based on Three Dimensional LBM-CA Model
PIAN Song, ZHANG Zhao, BAO Yuchong, LIU Lin, LI Ri
School of Material Science and Engineering, Hebei University of Technology, Tianjin 300130
下载:  全 文 ( PDF ) ( 2152KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 建立了三维格子玻尔兹曼方法(LBM)-元胞自动机(CA)耦合数值模型,并用该模型模拟研究了Al-4.7%Cu(质量分数)固溶体合金的凝固过程。该耦合模型采用元胞自动机方法模拟枝晶的生长,同时采用基于分子动力学理论的格子玻尔兹曼方法模拟合金凝固过程中的温度场、流场以及溶质场。模拟结果再现了合金凝固过程中的三维枝晶形貌变化以及溶质富集过程,并将三维流场因素考虑进去,定量研究了自然对流、过冷度对单枝晶形貌和成分分布的影响。研究表明,在纯扩散条件下,枝晶呈现对称的生长现象,模拟自由枝晶稳态生长的尖端速度、尖端半径和过冷度的关系与Lipton-Glicksman-Kurz(LGK)理论模型吻合得较好。在自然对流条件下,枝晶的生长形貌呈现不对称性,即枝晶生长在迎流方向上得到了促进,在顺流方向上受到了抑制。熔体过冷度对枝晶生长的影响较大,过冷度的增加导致枝晶生长加快,二次枝晶增多且呈现出粗化现象,枝晶尖端固液界面处的溶质浓度偏高,加重了溶质偏析。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
骈松
张照
包羽冲
刘林
李日
关键词:  数值模拟  枝晶生长  三维LBM-CA模型  流场  溶质富集    
Abstract: A new three-dimensional numerical model combining the lattice Boltzmann(LB) and cellular automaton(CA) met-hods was developed to simulate heat transport, fluid flow, solute diffusion, and dendritic growth in the process of the Al-4.7%Cu solidification of the single-phase solid solution alloy. In the coupled model, the dendritic growth was simulated by the cellular auto-maton method, and the temperature field, the flow field and the concentration field in the process of dendritic growth were numerically solved using the lattice Boltzmann method based on the molecule-kinetic theory. The simulation results verify that the change of dendrite morphology and the solute concentration during the solidification process which were reproduced. The effects of natural convection and undercooling on the dendrite morphology and composition distribution were studied quantitatively. The results show that under the condition of pure diffusion, the dendritic growth is symmetrical, the relationship between the tip velocity, the tip radius and the undercooling degree of the steady growth of simulated free dendrite is in good agreement with the predictions of the Lipton-Glicksman-Kurz(LGK) model. Under the condition of natural convection, themorphology of dendrite growth is asymmetric, that is to say, the dendritic growth in the upstream region of the natural flow is promoted, as well as the dendrite growth in the downstream region is inhibited. The effect of undercooling on dendrite growth is also great, the increase of undercooling leads to the increase of dendrite growth, and the secondary arms increase and coarsen, the solute concentration at the solid-liquid interface of the dendrite tip increases, which aggravates the solute segregation.
Key words:  numerical simulation    dendrite growth    three dimensional LBM-CA model    flow field    solute enrichment
出版日期:  2017-10-25      发布日期:  2018-05-05
ZTFLH:  TG146.2  
基金资助: *国家自然科学基金(51475138)
作者简介:  骈松:男, 1990年生,硕士研究生,主要从事材料加工CAD/CAE研究 E-mail:1213542910@qq.com 李日:通讯作者,男,1966年生,博士,教授,研究方向为铸造CAD/CAE E-mail:sdzllr@163.com
引用本文:    
骈松, 张照, 包羽冲, 刘林, 李日. 基于三维LBM-CA模型模拟Al-4.7%Cu合金的枝晶形貌和成分分布*[J]. 《材料导报》期刊社, 2017, 31(20): 140-146.
PIAN Song, ZHANG Zhao, BAO Yuchong, LIU Lin, LI Ri. Simulation of Dendrite Morphology and Composition Distribution of Al-4.7%Cu Alloy Based on Three Dimensional LBM-CA Model. Materials Reports, 2017, 31(20): 140-146.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.020.029  或          https://www.mater-rep.com/CN/Y2017/V31/I20/140
1 Rappaz M, Gandin C A.Probabilistic modeling of microstructure formation in solidification[J].Acta Metal Mater,1993,41(2):345.
2 Belteran-sanchez L, Stefanescu D M.A quantitative dendrite growth model and analysis of stability concepts[J].Metall Mater Trans A,2004,35(8):2471.
3 Shan B W, Lin X,Lei W, et al.A new growth kinetics in simulation of dendrite growth by cellular automaton method[J].Adv Mater Res,2007,26(28):957.
4 Feng Z G,Michaelides E E.The immersed boundary-lattice Boltzmann method for solving fluid-particles interaction problems[J]. J Comput Phys,2004,195(2):602.
5 Zhu L H,Guo Z L.GPU accelerated lattice Boltzmann simulation of flow in porous media[J].Chinese J Comput Phys,2015,32(1):20(in Chinese).
朱炼华,郭照立.基于格子Boltzmann方法的多孔介质流动模拟GPU加速[J].计算物理,2015,32(1):20.
6 Fu Y,Zhao S,Wang W,et al. Application of lattice Boltzmann met-hod for simulation of multiphase/multicomponent flow in microfui-dics[J].Ciesc J,2014,65(7):2535.
7 Yang C R, Sun D K, Pan S Y, et al. CA-LBM for the simulation of dendritic growth under natural convection[J]. Acta Metall Sin, 2009, 45(1):43(in Chinese).
杨朝蓉, 孙东科, 潘诗琰, 等. CA-LBM模型自然对流作用下的枝晶生长[J].金属学报, 2009, 45(1):43.
8 Bohumir J, Mohsen E, Sergio F,et al.Large-scale parallel lattice Boltzmann-cellular automaton model of two-dimensional dendritic growth[J].Comput Phys Commun, 2014, 185(3):939.
9 Sun D K, Zhu M F, Yang C R, et al. Modelling of dendritic growth in forced and natural conwections[J].Acta Phys Sin,2009, 58(13):285(in Chinese).
孙东科, 朱鸣芳, 杨朝蓉, 等. 强制对流和自然对流作用下枝晶生长的数值模拟[J]. 物理学报, 2009, 58(13):285.
10何雅玲, 王勇, 李庆. 格子Boltzmann方法的理论和应用[M]. 北京:北京科学出版社, 2009:49.
11Li X, Fang B, Xu X G,et al.Research progress in 3D simulation of microstructure of materials[J].Mater Rev,2011, 25(S2):245(in Chinese).
李星, 方斌, 徐秀国, 等.材料微观组织结构三维模拟的研究进展[J].材料导报,2011, 25(专辑18):245.
12Eshraghi M, Felicelli S D, Jelinek B.Three dimensional simulation of solutal dendrite growth using lattice Boltzmann and cellular automaton methods[J].J Cryst Growth,2012,354(1):129.
13Yin H, Feliceli S D,Wang L.Simulation of a dendritic microstructure with the lattice Boltzmann and cellular automaton methods[J].Acta Mater,2011,59(8):3124.
14Guo Z L, Li Q, Zheng C G.Lattice Boltzmann simulation of double diffusive natural convection[J].Chinese J Comput Phys,2002,19(6):483(in Chinese).
郭照立,李青,郑楚光.双扩散自然对流的格子Boltzmann模拟[J].计算物理,2002,19(6):483.
15Pan S Y, Zhu M F.A three-dimensional sharp interface model for the quantitative simulation of solutal dendritic growth[J]. Acta Mater,2010,58(1):340.
16Guo Z, Zheng C, Shi B. An extrapolation method for pressure and velocity boundary conditions in lattice Boltzmann method[J]. Chinese Phys, 2002,11(4):366.
17Nie D M, Lin J Z. Boundary conditions in lattice boltzmann method[J]. Chinese J Comput Phys, 2004, 21(1):21(in Chinese).
聂德明, 林建忠. 格子Boltzmann 方法中的边界条件[J]. 计算物理, 2004,21(1):21.
18Lipton J, Glicksman M E,Kurz W. Equiaxed dendrite growth at small supercooling[J].Metall Mater Trans A,1987,18(2):34.
19Lipton J, Glicksman M E, Kurz W. Dendritic growth into undercooled alloy melts[J].Mater Sci Eng, 1984,65(1):57.
20崔忠圻, 谭耀春.金属学与热处理[M].北京:机械工业出版社,2007:78.
21Rojas R,Takaki T, Ohno M. A phase-field-lattice Boltzmann method for modeling motion and growth of a dendrite for binary alloy solidification in the presence of melt convection[J]. J Comput Phys, 2015,298(1):29.
[1] 宫晓威, 常庆明, 常佳琦, 鲍思前. 平面流铸制备Fe-3%Si硅钢微观组织的数值模拟[J]. 材料导报, 2025, 39(2): 23090214-7.
[2] 郭鑫鑫, 魏正英, 张永恒, 张帅锋. 电弧增材制造传热传质数值模拟技术综述[J]. 材料导报, 2024, 38(9): 22090175-7.
[3] 牛克心, 余为, 郝颖. 通孔球壳胞元结构压缩力学性能[J]. 材料导报, 2024, 38(9): 22100287-6.
[4] 金浏, 张晓旺, 郭莉, 吴洁琼, 杜修力. 加载速率对锈蚀钢筋与混凝土粘结性能的影响[J]. 材料导报, 2024, 38(8): 22100011-9.
[5] 王越, 周本基, 徐能能, 乔锦丽. 可逆锌-空气电池锌阳极研究进展及挑战[J]. 材料导报, 2024, 38(6): 23040162-10.
[6] 梁宁慧, 毛金旺, 游秀菲, 刘新荣, 周侃. 多尺度聚丙烯纤维混凝土弯曲疲劳寿命试验及数值模拟[J]. 材料导报, 2024, 38(4): 22040023-8.
[7] 张天刚, 潘启越, 张志强, 曹思雨. 铝合金表面阳极氧化膜激光清洗机制分析[J]. 材料导报, 2024, 38(24): 23100128-10.
[8] 金浏, 杨健, 吴洁琼, 杜修力. 考虑混凝土细观非均质性的钢筋混凝土结构疲劳寿命预测概率模型[J]. 材料导报, 2024, 38(20): 23090009-8.
[9] 郑莲宝, 李旺, 王松伟, 徐勇, 宋鸿武. 基于场量传递的流动-传热-凝固过程耦合计算模型及其应用[J]. 材料导报, 2024, 38(20): 23080032-7.
[10] 邱飒蔚, 蒋家传, 叶拓, 张越, 雷贝, 王涛. AA7075-T6铝合金电阻点焊工艺参数优化研究[J]. 材料导报, 2024, 38(17): 23120177-8.
[11] 赵楠, 刘鹏, 王林, 林书行, 李昊阳. 回转窑中回收炉气与煤粉混合燃烧的数值模拟[J]. 材料导报, 2024, 38(16): 23040062-6.
[12] 闾川阳, 李科桥, 盛剑翔, 顾小龙, 石磊, 杨建国, 贺艳明. AlN/Cu钎焊接头残余应力的数值模拟研究[J]. 材料导报, 2024, 38(16): 23030229-9.
[13] 郑伍魁, 赵悦瑶, 王雅晨, 李辉. 用于泡沫混凝土制备的静态混合器模拟研究[J]. 材料导报, 2024, 38(15): 23010061-8.
[14] 姜琴, 刁珂龙, 杨谋存, 朱跃钊. 纳米流体中温热稳定性研究进展[J]. 材料导报, 2023, 37(S1): 23040330-10.
[15] 朱雪伟, 王海斗, 刘明, 朴钟宇. 等离子熔覆数值模拟研究现状[J]. 材料导报, 2023, 37(7): 21040228-9.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed