Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (2): 130-135    https://doi.org/10.11896/j.issn.1005-023X.2017.02.028
  计算模拟 |
复合材料V型构件的固化变形预测及其工装型面设计
王仁宇, 关志东, 王乾, 蒋婷, 黎增山
北京航空航天大学航空科学与工程学院, 北京 100191;
Cure-induced Deformation Prediction and Tool Surface Design for V Profile Composite Part
WANG Renyu, GUAN Zhidong, WANG Qian, JIANG Ting, LI Zengshan
School of Aeronautic Science and Engineering, Beihang University, Beijing 100191;
下载:  全 文 ( PDF ) ( 1780KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 利用固化动力学模型对20 mm厚度和3 mm厚度的ZT7H/5429碳纤维复合材料层合板进行了固化模拟,在固化过程中,20 mm厚度平板出现了温度峰值,中心温度与表面温度差不超过6 ℃,3 mm平板温度分布均匀,温度历程与热压罐工艺温度基本一致。利用简化的温度场和等效热膨胀系数对60°和 90°拐角的 V型基准试件进行了固化变形模拟,并进行了 V型基准试件的固化试验。60°和 90°拐角试件的固化回弹角的模拟值分别为 1.58°和 1.18°,试验测得的回弹角的平均值分别为 1.59°和1.11°。对V 型复合材料蒙皮构件进行了固化变形模拟,并得到了补偿过的工装型面,在该工装上成型的试件与设计形状基本一致。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王仁宇
关志东
王乾
蒋婷
黎增山
关键词:  树脂基复合材料  热压罐成型  固化变形  有限元  变形补偿    
Abstract: Cure kinetics model was used to simulate the cure process of 20 mm/3 mm thick composite plates. A peak on temperature curves was observed during the cure process of 20 mm plate. The temperature difference between interior and surface was less than 6 ℃, while for 3 mm plate, it kept the same with autoclave temperature and distributed uniformly. Cure-induced deformations of 60°/90° V profile specimens were simulated by applying simplified temperature field and equivalent coefficients of thermal expansion, and 6 V profile specimens (3 samples per type) were cured. The simulation spring-in angles of 60° and 90° specimens were 1.58° and 1.18° respectively which well agreed with the experiment (1.59° and 1.11°). Based on the simulation method, the surface of deformation-compensating tool for a composite skin was acquired. The application of the deformation-compensating tool increased the manufacturing accuracy greatly.
Key words:  polymer-matrix composites    autoclave    cure-induced deformation    finite element method    deformation compensation
出版日期:  2017-01-25      发布日期:  2018-05-02
ZTFLH:  TB332  
作者简介:  王仁宇:男,1992年生,硕士研究生,研究方向为复合材料固化变形模拟及控制 E-mail:renyuw@buaa.edu.cn 关志东:通讯作者,男,1964年生,博士后,教授,主要研究方向为复合材料结构设计 E-mail:zdguan@buaa.edu.cn
引用本文:    
王仁宇, 关志东, 王乾, 蒋婷, 黎增山. 复合材料V型构件的固化变形预测及其工装型面设计[J]. 《材料导报》期刊社, 2017, 31(2): 130-135.
WANG Renyu, GUAN Zhidong, WANG Qian, JIANG Ting, LI Zengshan. Cure-induced Deformation Prediction and Tool Surface Design for V Profile Composite Part. Materials Reports, 2017, 31(2): 130-135.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.02.028  或          https://www.mater-rep.com/CN/Y2017/V31/I2/130
1 Yang Q, Liu W P, Yan D X, et al. Theoretical models for predicting curing distortion in composites [J]. Mater Rev:Rev,2015,29(6):65(in Chinese).
阳青,刘卫平,晏冬秀,等.复合材料固化变形预测的理论模型 [J].材料导报:综述篇,2015,29(6):65.
2 Zhang J K, et al. Three-dimensional finite element simulation and prediction for process-induced deformation of thermoset composites [J]. Acta Mater Compos Sin,2009,26(1):174(in Chinese).
张继奎,等.热固性复合材料固化过程三维有限元模拟和变形预测[J].复合材料学报,2009,26(1):174.
3 Jia L J, Ye J R, Liu W P, et al. Role of structural factors in process cure-induced deformation of the complex composites [J]. Acta Mater Compos Sin,2013,30(Suppl):261(in Chinese).
贾丽杰,叶金蕊,刘卫平,等.结构因素对复合材料典型结构件固化变形影响 [J]. 复合材料学报,2013,30(增刊):261.
4 Dong Chensong. Dimension variation and control for composites [D]. Florida: The Florida State University,2003.
5 Fernlund G, Osooly A, Poursartip A, et al. Finite element based prediction of process-induced deformation of autoclaved composite structures using 2D process analysis and 3D structural analysis [J]. Composite Structures,2003,62:223.
6 Radford D W, Rennick T S. Separating sources of manufacturing distortion in laminated composites [J]. J Plastics Compos,2000,19(8):621.
7 Li G D. Research on key technologies for tool design of composite components undergoing autoclave processing [D]. Nanjing: Nanjing University of Aeronautics and Astronautics,2010(in Chinese).
李桂东.复合材料构件热压罐成型工装设计关键技术研究[D].南京:南京航空航天大学,2010.
8 Chen X J. Deformation prediction and compensation for composite components during curing process [D]. Nanjing: Nanjing University of Aeronautics and Astronautics,2011(in Chinese).
陈晓静.复合材料构件固化成型的变形预测与补偿 [D].南京:南京航空航天大学,2011.
9 Kappel E, Stefaniak D, Hühne C. Process distortions in prepreg manufacturing-An experimental study on CFRP L-profiles [J]. Compos Structures,2013,106:615.
10 Kappel E, Stefaniak D, Fernlund G. Predicting process-induced distortions in composite manufacturing-A pheno-numerical simulation strategy [J]. Compos Struct,2015,120:98.
11 何平笙,金邦坤,李春娥.热固性树脂及树脂基复合材料的固化——动态扭振法及其应用[M].合肥:中国科学技术大学出版社,2011:27.
12 Chen X B, Xing L Y, Zhou Z G. Simulation and modeling of polymeric composite temperature change during manufactory process [J]. J Aeronautical Mater,2009,29:61.
13 邢丽英.先进树脂基复合材料自动化制造技术[M].北京:航空工业出版社,2014:32.
14 Hahn H T, Pagano N J. Curing stresses in composite laminates [J]. J Compos Mater,1975,9:91.
15 American Society for Testing and Materials. ASTM-D3039 Test method for tensile properties response of polymer matrix composite materials[S]. Pennsylvania, Ameriaca: American Society for Testing and Materials International,2007.
16 American Society for Testing and Materials. ASTM-D3518 Test method for in-plane shear response of polymer matrix composite materials by tensile test of a ±45 laminate[S]. Pennsylvania, Ameriaca: American Society for Testing and Materials International,2007.
17 Bogetti T A, Gillespie J W. Process-induced stress and deformation in thick-section thermoset composite laminates [J]. J Compos Mater,1992,26(5):626.
[1] 冯超, 杨子帆, 刘曰利. SnBiAg无铅钎料恒温激光焊接的数值模拟与实验研究[J]. 材料导报, 2025, 39(3): 24010216-6.
[2] 李冲, 晏阳阳, 杨祯彧, 宋德军, 胡伟民, 杨胜利, 田世伟, 江海涛. TA24合金多道次热变形行为及管材制备仿真[J]. 材料导报, 2025, 39(2): 23120078-7.
[3] 陈守东, 卢日环, 李杰, 孙建. 强剪切对单层晶极薄带轧制变形行为的影响[J]. 材料导报, 2024, 38(7): 22090135-8.
[4] 彭鹏, 邵宇鹰, 胡海敏, 李振明, 刘伟. 基于碲化铋基柔性热电器件的自取能温度传感器结构设计及性能研究[J]. 材料导报, 2024, 38(6): 22080105-5.
[5] 汪愿, 孙运刚, 符彬, 刘文浩, 宣善勇, 刘鹏. 基于VARI工艺的碳纤维复合材料快速修理飞机铝合金裂纹的研究[J]. 材料导报, 2024, 38(6): 22020135-6.
[6] 方新宇, 徐干成, 魏迎奇, 刘彦泉, 袁伟泽, 周俊鹏. 新型高强钢板在结构抗接触爆炸中的应用[J]. 材料导报, 2024, 38(5): 23060206-7.
[7] 马超, 解帅, 王永超, 冀志江, 吴子豪, 王静. 用于红外和雷达波隐身的水泥基复合材料[J]. 材料导报, 2024, 38(5): 23080165-9.
[8] 吴子豪, 苏荣华, 马超, 解帅, 冀志江, 王英翔, 王静. 轻骨料水泥基多功能吸波材料的制备及有限元分析[J]. 材料导报, 2024, 38(5): 23080253-7.
[9] 潘伶, 许冰冰, 任志英, 史林炜, 陈毅鹏. 基于金属橡胶的轻质波纹型夹层结构静态力学性能[J]. 材料导报, 2024, 38(4): 22080228-6.
[10] 苏三庆, 邓瑞泽, 王威, 易术春, 左付亮, 刘馨为, 李俊廷. 基于金属磁记忆的弯曲工字钢梁的力-磁效应[J]. 材料导报, 2024, 38(4): 22070065-8.
[11] 卞立波, 陶志, 赵阳光, 巴合卓力·克孜尔开勒迪, 赵乙平. 碱激发胶凝材料硬化体内Na+分布规律模拟[J]. 材料导报, 2024, 38(3): 22090192-6.
[12] 张宏吉, 彭文飞, 李贺, 邵熠羽, Moliar Oleksandr. Cu-20%Fe粉末异步轧制有限元模拟及工艺参数影响规律[J]. 材料导报, 2024, 38(3): 22090131-7.
[13] 张彪, 刘家招, 杨鑫三, 孙宇萱. 基于XFEM的汽车铝合金断裂行为表征[J]. 材料导报, 2024, 38(19): 22100262-5.
[14] 罗广瑞, 吴子彬, 长海博文, 翁文凭, 王东涛, 李一峰, 毛志福, 董鑫, 冯志鑫, 陈希, 张海涛, 朱慧颖, 张波. 车用铝合金弯曲成形回弹行为研究进展[J]. 材料导报, 2024, 38(18): 23030082-10.
[15] 陈栋梁, 雷子萱, 徐力, 陈双, 刘育红, 强军锋. 热熔酚醛树脂/玻璃纤维层压板的固化特性及工艺优化[J]. 材料导报, 2024, 38(16): 23050095-8.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed