Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (2): 126-129    https://doi.org/10.11896/j.issn.1005-023X.2017.02.027
  材料研究 |
中钛型含钛高炉渣制微晶玻璃及其性能研究*
贺东风, 潘江涛, 曾凡博
北京科技大学冶金与生态工程学院, 北京 100083;
Preparation and Characterization of Glass-ceramics Based on Medium Titanium-bearing Blast Furnace Slag
HE Dongfeng, PAN Jiangtao, ZENG Fanbo
School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083;
下载:  全 文 ( PDF ) ( 1439KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以中钛型含钛高炉渣为主原料制备微晶玻璃,利用渣中的TiO2作晶核剂。采用差示扫描量热法(DSC)、X射线衍射(XRD)和扫描电子显微镜(SEM)等分析技术研究了含钛高炉渣用量的变化对基础玻璃晶化、微晶玻璃性能的影响。结果表明,渣中适量的TiO2对玻璃晶化有较好的促进作用。渣用量较低时制得的微晶玻璃的主晶相为硅灰石,但当渣用量超过70%时,主晶相发生变化,变为钙铝黄长石等长石类矿相。中钛型含钛高炉渣用量为63%左右时,制得的微晶玻璃晶相含量合适,性能最好。此时采用的热处理制度为:核化温度720 ℃,保温1 h,晶化温度945 ℃,保温2 h,制得的微晶玻璃抗弯强度为121.68 MPa,显微硬度为7.81 GPa。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
贺东风
潘江涛
曾凡博
关键词:  含钛高炉渣  微晶玻璃  晶核剂  力学性能  资源综合利用    
Abstract: Medium titanium-bearing blast furnace slag was used as the main material to manufacture glass-ceramic. TiO2 in this type of blast furnace slag serves as an effective constitute in terms of promoting the nucleation process. The effects of the mass fraction of blast furnace slag in the parent glass on the crystallization and properties of final products were studied by scanning calorimetry (DSC), X-ray diffraction (XRD), scanning electron microscopy (SEM) and etc. It is found that a medium-level of TiO2 in blast furnace slag could effectively initiate the crystallization within the parent glass. Low mass fraction of blast furnace slag would result in wollastonite as the major crystalline phases. In contrast, when the mass fraction of blast furnace slag exceeded 70%, the major phase would turn into gehlenite. Furthermore, when the mass fraction of blast furnace slag was 63%, the final glass-ceramic product with a desired crystallinity was characterized by excellent performance. The corresponding heat treatment systerm included a nucleating stage at 720 ℃ for 1 h and a crystal growth stage at 945 ℃ for 2 h. The resulting product possessed a bending strength of 121.68 MPa and a microhardness of 7.81 GPa.
Key words:  titanium-bearing blast furnace slag    glass-ceramics    nucleating agent    mechanical properties    resource comprehensive utilization
出版日期:  2017-01-25      发布日期:  2018-05-02
ZTFLH:  TF09  
基金资助: *国家自然科学基金(51534001)
作者简介:  贺东风:男,1975年生,博士,副教授,主要研究方向为冶金渣综合利用 E-mail:hdfcn@163.com
引用本文:    
贺东风, 潘江涛, 曾凡博. 中钛型含钛高炉渣制微晶玻璃及其性能研究*[J]. 《材料导报》期刊社, 2017, 31(2): 126-129.
HE Dongfeng, PAN Jiangtao, ZENG Fanbo. Preparation and Characterization of Glass-ceramics Based on Medium Titanium-bearing Blast Furnace Slag. Materials Reports, 2017, 31(2): 126-129.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.02.027  或          https://www.mater-rep.com/CN/Y2017/V31/I2/126
1 Wu J P, Rawlings R D, Boccaccini A R, et al. A glass-ceramic derived from high TiO2-containing slag: Microstructural development and mechanical behavior[J]. J Am Ceram Soc,2006,89(8):2426.
2 Francis A A. Conversion of blast furnace slag into new glass-ceramic material[J]. J Eur Ceram Soc,2004,24(9):2819.
3 Barbieri L, et al. Design, obtainment and properties of glasses and glass-ceramics from coal fly ash[J]. Fuel,1999,78(2):271.
4 Khater G A. Influence of Cr2O3, LiF, CaF2 and TiO2 nucleants on the crystallization behavior and microstructure of glass-ceramics based on blast-furnace slag[J]. Ceram Int,2011,37(7):2193.
5 Guo Xingzhong, Yang Hui, Yang Guangyue, et al. Effect of composite nucleation agents on crystallization and properties of CaO-MgO-Al2O3-SiO2 glass ceramics[J]. J Chinese Ceram Soc,2013,41(4):480(in Chinese).
郭兴忠,杨辉,杨广跃,等.含复合晶核剂CaO-MgO-Al2O3-SiO2微晶玻璃析晶与性能[J].硅酸盐学报,2013,41(4):480.
6 Cioffi R, Pernice P, Aronne A, et al. Glass-ceramic from fly ash with added MgO and TiO2[J]. J Eur Ceram Soc,1994,14(6):517.
7 Öveçogˇlu M L. Microstructural characterization and physical properties of a slag-based glass-ceramic crystallized at 950 and 1100 ℃[J]. J Eur Ceram Soc,1998,18(2):161.
8 王俭,毛裕文.渣图集[M].北京:冶金工业出版社,1989:222.
9 Cheng Jinshu, Li Shujing, Yang Fei. Effect of Na2O to high-temperature viscosity and crystallization of LAS glass-ceramics[J]. J Wuhan University of Technology,2010,32(22):44(in Chinese).
程金树,李淑晶,杨飞.Na2O对LAS微晶玻璃高温粘度及析晶的影响[J].武汉理工大学学报,2010,32(22):44.
10 Shi Peiyang, Jiang Maofa. Liu Chengjun, et al. Effect of CaO on glass ceramics crystallization and properties of CaO-Al2O3-SiO2 system[J]. J Chinese Ceram Soc,2004,32(11):1389(in Chinese).
史培阳,姜茂发,刘承军,等.CaO对CaO-Al2O3-SiO2 系微晶玻璃析晶和性能的影响[J].硅酸盐学报,2004,32(11):1389.
[1] 薛赞, 晋玺, 毛周朱, 兰爱东, 王大雨, 乔珺威. 热机械处理提高Cr47Ni33Co10Fe10多组元共晶合金力学性能[J]. 材料导报, 2025, 39(3): 23120100-6.
[2] 刘晓楠, 张春晓, 王世合, 张高展, 毛继泽, 曹少华, 刘国强. 养护制度对添加纳米SiO2超高性能混凝土动静态力学性能的影响[J]. 材料导报, 2025, 39(2): 23070188-7.
[3] 景宏君, 张超伟, 高萌, 丁仁红, 李毅民, 康明珂, 周子涵, 朱韶峰. 骨架密实型水泥稳定煤矸石级配设计与性能研究[J]. 材料导报, 2025, 39(2): 22040252-7.
[4] 曹雷刚, 侯鹏宇, 杨越, 蒙毅, 刘园, 崔岩. AlCoCrFeNix高熵合金高温热处理微观组织演变及力学性能[J]. 材料导报, 2025, 39(2): 23120247-7.
[5] 魏鑫, 焦芬, 刘维, 顾丝雨, 汪辰, 覃文庆. 垃圾飞灰与粉煤灰协同熔融制备CAS体系微晶玻璃的研究[J]. 材料导报, 2025, 39(1): 23120096-8.
[6] 马豪达, 白银, 陈波, 葛龙甄, 白延杰, 张丰. 水胶比和橡胶掺量对砂浆力学性能及能量演化规律的影响[J]. 材料导报, 2025, 39(1): 23120226-7.
[7] 王子健, 孙舒蕾, 肖寒, 冉旭东, 陈强, 黄树海, 赵耀邦, 周利, 黄永宪. 搅拌摩擦固相沉积增材制造研究现状[J]. 材料导报, 2024, 38(9): 22100039-16.
[8] 白云官, 吉小超, 李海庆, 魏敏, 于鹤龙, 张伟. 原位合成的钛合金@CNTs粉体SPS制备TiC/Ti复合材料的微结构与性能[J]. 材料导报, 2024, 38(9): 22120175-7.
[9] 邝亚飞, 李永斌, 张艳, 陈峰华, 孙志刚, 胡季帆. SPS烧结Ni-Mn-In合金的马氏体相变和力学性能研究[J]. 材料导报, 2024, 38(9): 23110107-6.
[10] 王艳, 高腾翔, 张少辉, 李文俊, 牛荻涛. 不同形态回收碳纤维水泥基材料的力学与导电性能[J]. 材料导报, 2024, 38(9): 23010043-9.
[11] 常川川, 李菊, 李晓红, 金俊龙, 张传臣, 季亚娟. 热处理对同质异态TC17钛合金线性摩擦焊接头的影响[J]. 材料导报, 2024, 38(8): 22080152-5.
[12] 郑思铭, 李蔚, 杨函瑞, 陈松, 魏取福. 3D打印聚乳酸的改性研究与应用进展[J]. 材料导报, 2024, 38(8): 22100107-10.
[13] 郑琨鹏, 葛好升, 李正川, 刘贵应, 田光文, 王万值, 徐国华, 孙振平. 河砂与石英砂对蒸养超高性能混凝土(UHPC)性能的影响及机理[J]. 材料导报, 2024, 38(7): 22040216-6.
[14] 吕晶, 赵欢, 张金翼, 席培峰. 冻融循环作用下不同含水率灰土的细微观结构与宏观力学性能[J]. 材料导报, 2024, 38(7): 22110321-7.
[15] 刘斌, 索超, 李忠华, 蒯泽宙, 陈彦磊, 唐秀. 选区激光熔化成形铜合金研究进展[J]. 材料导报, 2024, 38(7): 22080129-11.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed