Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (18): 55-58    https://doi.org/10.11896/j.issn.1005-023X.2017.018.012
  材料研究 |
纤维素纳米纤维接枝聚丙烯酸pH响应水凝胶的制备及性能*
林皓1, 胡家朋1, 刘瑞来1,2, 饶瑞晔1
1 武夷学院生态与资源工程学院,福建省生态产业绿色技术重点实验室,武夷山 354300;
2 福建师范大学材料科学与工程学院,福建省高分子材料与工程重点实验室,福州 350007
Synthesis and Properties of pH-responsive Cellulose-g-PAA Nanofiber Hydrogels
LIN Hao1, HU Jiapeng1, LIU Ruilai1,2, RAO Ruiye1
1 Fujian Provincial Key Laboratory of Eco-Industrial Green Technology, College of Ecological and Resource Engineering, Wuyi University, Wuyishan 354300;
2 Key Laboratory of Polymer Materials of Fujian Province, College of Material Science and Engineering, Fujian Normal University, Fuzhou 350007
下载:  全 文 ( PDF ) ( 1402KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以硝酸铈铵为引发剂,将具有pH响应的聚丙烯酸(PAA)接枝到电纺纤维素(Cell)纳米纤维膜上,制备了pH响应纤维素接枝聚丙烯酸(Cell-g-PAA)纳米纤维水凝胶。研究了接枝单体丙烯酸(N)与纤维素(c)质量比对Cell-g-PAA形貌、接枝率和溶胀性的影响。结果表明:m(N)∶m(c)值从5增加到10,接枝率从11%急剧增加到28%,然后趋于平稳;而m(N)∶m(c)值从5增加到15,溶胀率从(15.2±1.6) g/g增加到(46.1±4.9) g/g,然后下降。同时,研究了pH值和离子强度对水凝胶溶胀率的影响,pH值从2.2增加到7.8时,水凝胶的溶胀率从(31.3±2.5) g/g增加到(42.7±3.2) g/g, pH值进一步增大,溶胀率降低;溶液中离子强度从0 mol/L增加到0.15 mol/L,水凝胶溶胀率从(36.2±2.6) g/g降低到(21.4±1.4) g/g。本研究为制备快速响应pH水凝胶提供了一种新方法。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
林皓
胡家朋
刘瑞来
饶瑞晔
关键词:  纤维素  聚丙烯酸  接枝  pH响应  水凝胶    
Abstract: Cellulose-g-PAA nanofiber hydrogels with pH-responsive were synthesized by graft copolymerization of pH-responsive polyacrylic acid (PAA) on to electrospun cellulose nanofibrous membranes with ammonium ceric nitrate as initiator. The effect of m(N)/m(c) on the morphology, grafting rate and swelling rate of cell-g-PAA nanofiber hydrogels were investigated. The results showed that the grafting rate of cell-g-PAA nanofiber hydrogels rapidly increased from 11% to 28% with increasing m(N)/m(c) from 5 to 10, and then leveled off. The swelling rate of cell-g-PAA nanofiber hydrogels increased from (15.2±1.6) g/g to (46.1±4.9) g/g with increasing m(N)/m(c) from 5 to 15, and then decreased. The effect of pH and ionic strength on the swelling rate of hydrogels were investigated. When the pH value changed from 2.2 to 7.8, the swelling rate increased from (31.3±2.5) g/g to (42.7±3.2) g/g, and then decreased. Moreover, the swelling rate decreased from (36.2±2.6) g/g to (21.4±1.4) g/g when ionic strength increased from 0 mol/L to 0.15 mol/L. This research provides a new approach to fabricate hydrogels with great sensitivity to pH value.
Key words:  cellulose    polyacrylic acid    grafting    pH-responsive    hydrogels
出版日期:  2017-09-25      发布日期:  2018-05-08
ZTFLH:  O631.2  
基金资助: 国家自然科学基金(51406141);福建省教育厅项目(JK2014052;JZ160333)
通讯作者:  刘瑞来:通讯作者,男,1984年生,博士,副教授,主要研究方向为天然高分子材料 E-mail:wyulrl@163.com   
作者简介:  林皓:男,1979年生,硕士,副教授,主要研究方向为天然高分子及其水处理技术 E-mail:48717294@qq.com
引用本文:    
林皓, 胡家朋, 刘瑞来, 饶瑞晔. 纤维素纳米纤维接枝聚丙烯酸pH响应水凝胶的制备及性能*[J]. 《材料导报》期刊社, 2017, 31(18): 55-58.
LIN Hao, HU Jiapeng, LIU Ruilai, RAO Ruiye. Synthesis and Properties of pH-responsive Cellulose-g-PAA Nanofiber Hydrogels. Materials Reports, 2017, 31(18): 55-58.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.018.012  或          https://www.mater-rep.com/CN/Y2017/V31/I18/55
1 Yilmaz M D, Kati A. Encapsulation and pH-responsive release of an optical brightener (CBUS) from chitosan microcontainers for optical bleaching of cellulosic fabrics[J]. Cellulose, 2015,22(6):4077.
2 Altomare L, Cochis A, Carletta A, et al. Thermo-responsive methylcellulose hydrogels as temporary substrate for cell sheet biofabrication[J]. J Mater Sci Mater Med, 2016,27(5):345.
3 Olosa A, Kruener B, Jaeckel N, et al. Electrospinning and electrospraying of silicon oxycarbide-derived nanoporous carbon for supercapacitor electrodes[J]. J Power Sources, 2016,313:178.
4 Ma W, Zhang Q, Hua D, et al. Electrospun fibers for oil-water se-paration[J]. RSC Adv, 2016,6(16):12868.
5 Liu H Q, Zhen M, Wu R H. Ionic-strength- and pH-responsive poly acrylamide-co-(maleilc acid) hydrogel nanofibers[J]. Macromol Chem Phys, 2007,208(8):874.
6 Cao S G, Hu B H, Liu H Q. Synthesis of pH-responsive crosslinked poly styrene-co-(maleic sodium anhydride) and cellulose composite hydrogel nanofibers by electrospinning[J]. Polym Int, 2009,58(5):545.
7 Deng F, Ge X, Zhang Y, et al. Synthesis and characterization of microcrystalline cellulose-graft-poly(methyl methacrylate) copolymers and their application as rubber reinforcements[J]. J Appl Polym Sci, 2015,132(41):42666.
8 Isiklan N, Kursun F. Synthesis and characterization of graft copolymer of sodium alginate and poly(itaconic acid) by the redox system[J]. Polym Bull, 2013,70(3):1065.
9 Routray C, Tosh B. Controlled grafting of MMA onto cellulose and cellulose acetate[J]. Cellulose, 2012,19(6):2115.
10Liu Ruilai, Liu Junshao, Liu Haiqing. Fabrication of PLLA and CA composited porous ultrafine fibers nanofibers[J]. Acta Polym Sin, 2013(10):1312(in Chinese).
刘瑞来, 刘俊劭, 刘海清. 聚乳酸/醋酸纤维素复合多孔超细纤维的制备[J]. 高分子学报, 2013(10):1312.
11Chen Peizhen, Liu Ruilai, Rao Ruiye. Synthesis and properties of poly(N-isopropylacrylamide)-g-cellulose hydrogels[J]. Chin J Appl Chem, 2016,33(12):1389(in Chineses).
陈培珍, 刘瑞来, 饶瑞晔. 纤维素纳米纤维接枝聚(N-异丙基丙烯酰胺)水凝胶的制备与表征[J]. 应用化学, 2016,33(12):1389.
12Liu R L, Ye H Y, Xiong X P, et al. Fabrication of TiO2/ZnO composite nanofibers by electrospinning and their photocatalytic property[J]. Mater Chem Phys, 2010,121(3):432.
13Yu H F, Fu G Q, He B L. Preparation and adsorption properties of PAA-grafted cellulose adsorbent for low-density lipoprotein from human plasma[J]. Cellulose, 2007,14(2):99.
[1] 唐言, 严娇, 王犁, 安鹏, 颜贵龙, 来婧娟, 李振宇, 周利华, 武元鹏. 羧甲基瓜尔胶/聚乙烯醇/聚丙烯酰胺形状记忆导电水凝胶的制备及性能研究[J]. 材料导报, 2025, 39(3): 23090015-7.
[2] 张婷, 吴翠玲, 籍冰晗, 韩梦瑶, 杜雪岩. 再生纤维素基三明治结构复合薄膜的电磁屏蔽性能[J]. 材料导报, 2025, 39(2): 23100181-6.
[3] 丁鉴峒, 谌阳, 宋坤, 张立佳, 孟赟慧, 李晓白, 潘梦瑶, 马洪伟. 纤维素基光子晶体的研究进展[J]. 材料导报, 2025, 39(1): 24100081-9.
[4] 黎涛, 孟威明, 王丁丁, 卫春祥, 鲁红典. 多层结构聚丙烯酰胺水凝胶太阳能蒸发器的制备及性能[J]. 材料导报, 2024, 38(7): 22080085-5.
[5] 杨程程, 柳力, 刘朝晖, 黄优, 刘磊鑫. 基于分子动力学的偶联剂接枝改性玄武岩纤维与沥青粘附特性研究[J]. 材料导报, 2024, 38(6): 22110027-7.
[6] 刘亭亭, 田国兴, 赵欣, 余新勇, 毛超, 于雪寒, 陈玲. 三维网络结构镍钴氢氧化物/石墨烯水凝胶复合材料的合成及电化学性能[J]. 材料导报, 2024, 38(5): 22070064-7.
[7] 白忠薛, 王学川, 李佳俊, 冯宇宇, 白波涛, 黄梦晨, 岳欧阳, 刘新华. 生物质基导电水凝胶的研究进展[J]. 材料导报, 2024, 38(4): 22090215-14.
[8] 李文龙, 支云飞, 陈泽文, 陕绍云, 李梦蕊. 纤维素-金属氧化物在传感器中的应用研究进展[J]. 材料导报, 2024, 38(3): 22060031-8.
[9] 伍红雨, 肖海, 曾向东, 赵晓昱. 导电水凝胶材料研究进展及在超级电容器的应用[J]. 材料导报, 2024, 38(19): 23060125-8.
[10] 张维, 张义博, 张琪, 姚继明, 郝尚. PDMS包封CPCM制备三明治结构织物及热性能分析[J]. 材料导报, 2024, 38(19): 23050176-5.
[11] 吴强, 商伶俐, 李学锋, 张高文, 黄以万, 龙世军. 多糖聚电解质静电组装高强度水凝胶膜的组织粘接抑菌性[J]. 材料导报, 2024, 38(18): 23030284-6.
[12] 龙娟, 李宇展, 李志强, 钟土华. 纳米纤维素的点击反应改性及应用研究进展[J]. 材料导报, 2024, 38(17): 23050159-10.
[13] 侯福星, 白一鸣, 沈頔, 王剑云. 微生物自修复混凝土载体材料研究进展[J]. 材料导报, 2024, 38(13): 23040048-15.
[14] 刘亮, 李思雨, 赵春霞, 向东, 李云涛, 李辉. 纤维素基碳材料应变传感器的制备及性能[J]. 材料导报, 2024, 38(13): 22110159-6.
[15] 魏嘉佳, 孟昊天, 李鹏程, 王文轩, 李梦茹, 涂秋芬. 贻贝仿生聚酚胺涂层固定REDV短肽促内皮化探究[J]. 材料导报, 2024, 38(13): 23020001-7.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed