Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (18): 49-54    https://doi.org/10.11896/j.issn.1005-023X.2017.018.011
  材料研究 |
硅丙乳液对镁系无机胶黏剂性能和微结构的影响*
肖俊华, 左迎峰, 吴义强, 刘文杰, 吴志平, 孟陶陶
中南林业科技大学材料科学与工程学院,长沙 410004
Effect of Silicone-acrylic Emulsion on Properties and Microstructure of Mg-based Inorganic Adhesive
XIAO Junhua, ZUO Yingfeng, WU Yiqiang, LIU Wenjie, WU Zhiping, MENG Taotao
College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004
下载:  全 文 ( PDF ) ( 2435KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以硅丙乳液为改性剂,通过扫描电镜(SEM)、X射线衍射仪(XRD)等手段分析了添加量对镁系无机胶黏剂复合板材力学强度、耐水性能、阻燃性能和镁系无机胶黏剂凝固时间的影响原因。结果表明:硅丙乳液与镁系无机胶黏剂可以形成有机无机的互穿网络结构;随着添加量增大,硅丙乳液的成膜性增强,使镁系无机胶黏剂的黏结性能及材料的整体性增加,复合板材力学性能增强,耐水性能提高;添加量增加的同时也会延缓镁系无机胶黏剂的凝固时间,但不会对镁系无机胶黏剂的晶相组成产生影响;此外,镁系无机胶黏剂还赋予秸秆板较好的阻燃抑烟特性,硅丙乳液的添加对复合板材的阻燃性能没有明显影响。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
肖俊华
左迎峰
吴义强
刘文杰
吴志平
孟陶陶
关键词:  镁系无机胶黏剂  硅丙乳液  力学强度  耐水性能  凝固时间  阻燃性能    
Abstract: Taking acrylic emulsion as modifier, effects of dosage on the mechanical strength, water resistance and flame retardation of magnesium-based inorganic adhesive composite board and the setting time of magnesium-based inorganic adhesive were discussed. Then the causes of those effects were analyzed by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The results showed that silicone-acrylic emulsion could form an organic and inorganic interpenetrating network structure with magnesium-based inorganic adhesive. With the increasing dosage, the film-forming property of silicone-acrylic emulsion improved, and the bon-ding property of magnesium-based inorganic adhesive and the integrity of the material increased, thus the mechanical properties and water resistance were improved. Meanwhile, the increase of dosage would also delay the setting time of magnesium-based inorganic adhesive, but it had no effect on the crystalline phases. Moreover, magnesium-based inorganic adhesive also provided the straw board with good performance of flame retardation and smoke suppression. The addition of silicone-acrylic emulsion showed no significant effect on the flame retardation of the composites.
Key words:  magnesium-based inorganic adhesive    silicone-acrylic emulsion    mechanical strength    water resistance    setting time    flame retardation
出版日期:  2017-09-25      发布日期:  2018-05-08
ZTFLH:  TQ433.5  
  S38  
基金资助: “十二五”国家科技支撑计划课题(2012BAD24B03);林业专利产业化引导项目(林业专利2016-11);国家林业公益性行业科研重大专项(201204704);湖南省科技人才计划项目(2016TP1013);湖南省科技创新平台(2016RS2010)
通讯作者:  吴义强:通讯作者,男,1967年生,博士,教授,主要从事农作物资源利用、生物质复合材料、木材科学研究 E-mail:wuyq0506@126.com   
作者简介:  肖俊华:男,1993年生,硕士研究生,主要研究方向为无机胶黏剂与秸秆无机复合材料 E-mail:shawtable0416@163.com,左迎峰:男,1986年生,博士,讲师,主要从事木材胶黏剂制备及改性研究 E-mail:zuoyf1986@163.com
引用本文:    
肖俊华, 左迎峰, 吴义强, 刘文杰, 吴志平, 孟陶陶. 硅丙乳液对镁系无机胶黏剂性能和微结构的影响*[J]. 《材料导报》期刊社, 2017, 31(18): 49-54.
XIAO Junhua, ZUO Yingfeng, WU Yiqiang, LIU Wenjie, WU Zhiping, MENG Taotao. Effect of Silicone-acrylic Emulsion on Properties and Microstructure of Mg-based Inorganic Adhesive. Materials Reports, 2017, 31(18): 49-54.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.018.011  或          https://www.mater-rep.com/CN/Y2017/V31/I18/49
1 Zhou X, Li Z. Light-weight wood-magnesium oxychloride cement composite building products made by extrusion[J]. Construct Build Mater, 2012,27(1):382.
2 涂平涛. 氯氧镁材料技术与应用[M]. 北京: 化学工业出版社, 2009.
3 Sglavo V M, De Genua F, Conci A, et al. Influence of curing temperature on the evolution of magnesium oxychloride cement[J]. J Mater Sci, 2011,46(20):6726.
4 Nazerian M, Sadeghiipanah V. Cement-bonded particleboard with a mixture of wheat straw and poplar wood[J]. J Forestry Res, 2013,24(2):381.
5 Xiao Junhua, Zuo Yingfeng, Liu Wenjie, et al. Research progress of adhesives for strawboard[J]. Mater Rev: Rev, 2016,30(9):78(in Chinese).
肖俊华, 左迎峰, 刘文杰, 等. 秸秆人造板用胶黏剂研究进展[J]. 材料导报:综述篇, 2016,30(9):78.
6 Zhang Cuimiao, Yang Hongjian, Ma Xuejing. Research progress of magnesium oxychloride cement[J]. Bull Chin Ceram Soc, 2014,33(1):117-121(in Chinese).
张翠苗, 杨红健, 马学景. 氯氧镁水泥的研究进展[J]. 硅酸盐通报, 2014,33(1):117.
7 闫振甲, 何艳君. 镁水泥改性及制品生产实用技术[M]. 北京: 化学工业出版社, 2006.
8 Zhou Z, Chen H, Li Z, et al. Simulation of the properties of MgO-MgfCl2-H2O system by thermodynamic method[J]. Cement Concrete Res, 2015,68:105.
9 Wang G, Liu Y, Liang H, et al. Formation mechanism of basic magnesium chlorides whiskers[J]. Asian J Chem, 2013,25(17):9731.
10Hu C, Xu B, Ma H, et al. Micromechanical investigation of magnesium oxychloride cement paste[J]. Construct Build Mater, 2016,105:496.
11Chau C K, Chan J, Li Z. Influences of fly ash on magnesium oxychloride mortar[J]. Cement Concrete Composites, 2009,31(4):250.
12Xu L, Xu L, Dai W, et al. Preparation and characterization of a novel fluoro-silicone acrylate copolymer by semi-continuous emulsion polymerization[J]. J Fluorine Chem, 2013,153:68.
13Wen J, Yu H, Li Y, et al. Effects of H3PO4 and Ca(H2PO4)2 on mechanical properties and water resistance of thermally decomposed magnesium oxychloride cement[J]. J Central South University, 2013,20:3729.
14Wu C, Yu H, Zhang H, et al. Effects of phosphoric acid and phosphates on magnesium oxysulfate cement[J]. Mater Struct, 2015,48(4):907.
15Wongpa J, Kiattikomol K, Jaturapitakkul C, et al. Compressive strength, modulus of elasticity, and water permeability of inorganic polymer concrete[J]. Mater Des, 2010,31(10):4748.
16Lloyd R R, Provis J L, van Deventer J S J. Microscopy and microanalysis of inorganic polymer cements. 2: The gel binder[J]. J Mater Sci, 2009,44(2):620.
17Zhang X L, Wu Y Q, Wu Z P. Optimization on the preparation technology of silicate adhesive with Semi-IPN structure by response surface methodology[J]. China Forest Products Industry, 2015,42(9):26(in Chinese).
张新荔, 吴义强, 吴志平. 响应面法优化Semi-IPN结构硅酸盐胶黏剂的制备工艺[J]. 林产工业, 2015,42(9):26.18Xu B, Ma H, Hu C, et al. Influence of curing regimes on mechanical properties of magnesium oxychloride cement-based composites[J]. Construct Build Mater, 2016,102:613.
19Gong X Y, Fan X D, Xu L. Study on the composite latex of organo siloxane-acrylate copolymer of high property and high organo silo-xane content[J]. Polym Mater Sci Eng, 2003,19(2):217(in Chinese).
龚兴宇, 范晓东, 徐亮. 高性能高硅烷含量硅丙复合乳液的研究[J]. 高分子材料科学与工程, 2003,19(2):217.
20Fu Bin, Li Xingong, Pan Yage, et al. The preparation and pro-perties of inorganic wheat straw particleboard[J]. J Funct Mater, 2015,46(1):1112(in Chinese).
符彬, 李新功, 潘亚鸽, 等. 无机麦秸碎料板制备及性能[J]. 功能材料, 2015,46(1):1112.
[1] 吴妹, 徐晓磊, 李晓, 刘玖红, 于光睿, 段好东, 韩玉玺, 于青, 王忠卫. 甲基取代二芳基氧化膦阻燃改性环氧树脂的研究[J]. 材料导报, 2024, 38(16): 23040213-10.
[2] 钟旷楠, 刘志超, 王发洲. 碳化养护制备钢渣粉3D打印材料及其性能研究[J]. 材料导报, 2024, 38(14): 23040244-8.
[3] 鲁玉鑫, 卢林刚. 聚磷酸铵-单宁酸-三聚氰胺/环氧树脂复合材料的阻燃及力学性能[J]. 材料导报, 2023, 37(9): 21090236-8.
[4] 许松江, 许志彦, 侯泽明, 宝冬梅, 周国永, 邹光龙. 环氧树脂/DOPS衍生物复合材料的阻燃性能及热降解行为[J]. 材料导报, 2023, 37(22): 22070044-7.
[5] 朱倍, 徐迅, 胡海龙, 余波, 朱妍, 甘露. 基于改性剂调控517相改善碱式硫酸镁水泥耐水性能[J]. 材料导报, 2023, 37(19): 22050264-6.
[6] 马昆林, 刘建, 申景涛, 胡明文, 王晓杰, 龙广成, 曾晓辉. 砖混再生粗骨料及其在混凝土中的研究与应用进展[J]. 材料导报, 2023, 37(18): 22010215-12.
[7] 刘超, 王有强, 刘化威, 张荣飞. 基于打印参数影响的3D打印混凝土力学性能试验研究[J]. 材料导报, 2023, 37(1): 21110276-7.
[8] 吕建伟, 张洪亮, 张戈, 李纪岩. 硅酸锂混合溶液浸泡对石灰岩集料耐磨性能的影响[J]. 材料导报, 2022, 36(Z1): 21120243-8.
[9] 何兆益, 谭洋伟, 李家琪, 张权, 吴逸飞. 埃洛石纳米管协效阻燃改性沥青性能及机理研究[J]. 材料导报, 2022, 36(2): 20110080-8.
[10] 陈春悦, 徐春萍, 张永航, 龚维, 班大明. 磷杂菲添加型阻燃剂对乙烯基酯树脂改性探究[J]. 材料导报, 2022, 36(15): 21040246-5.
[11] 马丽, 黄建建, 何慧, 杨波, 贾德民, 郭东杰, 陈宝元. 微波辐照辅助核/壳型聚硅氧烷/聚丙烯酸酯复合乳液的制备与表征[J]. 材料导报, 2021, 35(22): 22166-22171.
[12] 康兴隆, 鲁哲宏, 柳妍, 冯伟丽, 刘保英, 房晓敏, 丁涛. 改性纳米二氧化硅协效二乙基次磷酸铝阻燃尼龙6[J]. 材料导报, 2021, 35(18): 18047-18051.
[13] 唐启恒, 郭文静. 三聚氰胺聚磷酸盐/次磷酸铝对高密度纤维板阻燃和力学性能的影响[J]. 材料导报, 2021, 35(16): 16166-16171.
[14] 赵敏, 张明涛, 彭家惠, 黄谦, 赵亮. 硫铝酸盐水泥增强建筑石膏的力学性能与耐水性能机理[J]. 材料导报, 2021, 35(12): 12099-12102.
[15] 范娟娟, 闵样, 杨吉, 张永航, 班大明. 一种具有良好抑烟性能的磷杂菲阻燃剂在环氧树脂中的应用研究[J]. 材料导报, 2021, 35(10): 10189-10196.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed